Development of 13 microsatellites for Gunnison Sage-grouse (Centrocercus minimus) using next-generation shotgun sequencing and their utility in Greater Sage-grouse (Centrocercus urophasianus) Jennifer A. Fike, Sara J. Oyler-McCance, Shawna J. Zimmerman & Todd A. Castoe

Volume 6 · No. 3 · September 2014

Conservation Genetics Resources

ISSN 1877-7252

Conservation Genet Resour DOI 10.1007/s12686-014-0336-z

Conservation Genetics Resources

🖄 Springer

Your article is protected by copyright and all rights are held exclusively by Springer Science+Business Media Dordrecht (outside the USA). This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".

MICROSATELLITE LETTERS

Development of 13 microsatellites for Gunnison Sage-grouse (*Centrocercus minimus*) using next-generation shotgun sequencing and their utility in Greater Sage-grouse (*Centrocercus urophasianus*)

Jennifer A. Fike · Sara J. Oyler-McCance · Shawna J. Zimmerman · Todd A. Castoe

Received: 5 September 2014/Accepted: 8 September 2014 © Springer Science+Business Media Dordrecht (outside the USA) 2014

Abstract Gunnison Sage-grouse are an obligate sagebrush species that has experienced significant population declines and has been proposed for listing under the U.S. Endangered Species Act. In order to examine levels of connectivity among Gunnison Sage-grouse leks, we identified 13 novel microsatellite loci though next-generation shotgun sequencing, and tested them on the closely related Greater Sage-grouse. The number of alleles per locus ranged from 2 to 12. No loci were found to be linked, although 2 loci revealed significant departures from Hardy–Weinberg equilibrium or evidence of null alleles. While these microsatellites were designed for Gunnison Sage-grouse, they also work well for Greater Sage-grouse and could be used for numerous genetic questions including landscape and population genetics.

Keywords Gunnison Sage-grouse · Greater Sage-grouse · Microsatellites · *Centrocercus minimus · Centrocercus urophasianus*

Gunnison Sage-grouse (*Centrocercus minimus*) have experienced significant range reductions and population declines, and as a result, has been proposed for listing under the U.S. Endangered Species Act. The range of the Gunnison Sage-grouse consists of one moderately sized population in the Gunnison Basin surrounded by six small, isolated, satellite populations (Oyler-McCance et al. 2005). Within the Gunnison Basin and throughout the species' range, there is a need to examine levels of connectivity among Gunnison Sage-grouse leks and to analyze those delineations in relation to habitat and anthropogenic variables, allowing managers to better understand functional connectivity among areas. Previous research revealed that Gunnison Sage-grouse have much less genetic diversity than Greater Sage-grouse (Oyler-McCance et al. 1999) and thus require a large suite of highly polymorphic microsatellite loci to adequately assess fine scale landscape genetic variation. For this reason, we identified and designed primers for 13 microsatellite markers in Gunnison Sagegrouse.

Genomic DNA from the blood of a Gunnison Sagegrouse was isolated using a standard phenol–chloroform protocol. Microsatellites for Gunnison Sage-grouse were identified from a next-generation shotgun sequencing run that provided massive numbers of candidate microsatellite loci. The next generation sequencing protocol is described elsewhere (Castoe et al. 2012). We chose 20 potential microsatellites (including di-, tri-, and tetra-nucleotide repeats), of which, 13 amplified consistently and were used for initial screening.

For polymorphism screening we isolated DNA from the blood of 31 Gunnison Sage-grouse originating from a population in Gunnison Basin, CO using an ammonium acetate protocol (modified from the PUREGENE kit; Gentra Systems) and from 14 Greater Sage-grouse sampled from a population in North Evanston, WY using a standard phenol–chloroform protocol. Screening PCRs were performed in 10 μ L reactions containing 0.2 mM of each

J. A. Fike (🖂) · S. J. Oyler-McCance

U. S. Geological Survey, Fort Collins Science Center,

²¹⁵⁰ Centre Ave, Building C, Fort Collins, CO 80526, USA e-mail: fikej@usgs.gov

S. J. Zimmerman

Natural Resource Ecology Lab, Colorado State University (in cooperation with U.S. Geological Survey, Fort Collins Science Center), Fort Collins, CO 80526, USA

T. A. Castoe

Department of Biology, The University of Texas at Arlington, Box 19498, Arlington, TX 76019-0498, USA

)											
Locus	GenBank accession	Primer sequence	$T_{A} (^{\circ}C)$	Motif	Gunn	ison				Great	ter			
	no.				A]	Z.	ize range	$\mathrm{H_{E}}$	H_{0}	A	z	Size range	$\mathrm{H_{E}}$	H ₀
SG21	KJ486474	F: M13-AGGCAAAACAGTCACACATGC R: ATCACAAGCAGAGTGCAGGC	60	$TC_{(27)}$	∞	31 19)5–231	0.739	0.710	6	14 2	205–241	0.706	0.786
SG23	KJ486475	F: M13-CCAGTCACAGCCCAGAAGC R: GCAATCGTTTATCACCTGCG	55	ATGG ₍₁₃₎	2	30 32	29–361	0.616	0.533 ^a	4	13 3	325–349	0.532	0.462 ^b
SG26	KJ486476	F: M13-TGGCCAGAAATTTAGGTGTGG R: TTAAGCAATCTGAAACCCCTTACC	60	$ATT_{(12)}$	6	31 13	36-139	0.252	0.226	S	14 1	121–142	0.598	0.643
SG27	KJ486477	F: M13-TGAACTCTTCACTGTCTAAAGGGG R: TCACTCCCTAGGAACCTCCG	60	TC ₍₁₅₎	2	9 1 ²	t9–153	0.313	0.379	12	13 1	121–169	0.920	0.769 ^{ab}
SG28	KJ486478	F: M13-ACAGGGGAAGGACAGACTGG R: ACCTCTGCTTTTCCATTGCC	60	AC ₍₂₅₎	8	1 12	44-172	0.821	0.871	12	14 1	128-172	0.894	0.857
SG29	KJ486479	F: M13-AAGGGGCTTAGGGTTTTAATGG R: AGTTAACTAGGTGGGGGGG	60	AC ₍₂₅₎	12	80 1 ²	t9–191	0.860	0.800	×	14 1	137–155	0.889	1.000
SG30	KJ486480	F: M13-TTATTAAGTGCCTTGGTGTGGGC R: GAATTGCTAACTGTCATGAGCCC	60	AAAT(10)	ŝ	11 18	31-189	0.476	0.452	$\tilde{\omega}$	14 1	181–193	0.685	0.786
SG31	KJ486481	F: M13-GAACCGTTGTTTCTTCTGCC R: AAACCTGTTCAGTTGTCATGTCC	60	AATG(11)	ŝ	1 15	50-166	0.554	0.581	9	13 1	150-170	0.772	0.538 ^{ab}
SG33	KJ486482	F: M13-AGCTTCCCAGTGAATGAGCG R: GGTGGAGACTGAGGTGTAACCC	60	AAAT(10)	4	1 12	47–159	0.750	0.645 ^b	ŝ	14 1	143–163	0.720	0.571 ^b
SG34	KJ486483	F: M13-TGAGATCAAGAAGATAACAGGAGG R: AGTTGTAGAAGACTTTATAGAGAGAAATCC	60	ATT ₍₁₂₎	2	11 16	55-168	0.178	0.194	ŝ	14 1	162–174	0.553	0.571
SG36	KJ486484	F: M13-TTCCAGACATTTTGGGAGCC R: CACATGTCCATCCAACCACC	60	ATGG ₍₁₃₎	4	1 2	12–254	0.628	0.677	S	13 2	222–258	0.803	0.615 ^b
SG38	KJ486485	F: M13-CAGCAATGGTAGGTGATGGC R: AAATGTTGCTGAGCCTCTTGG	60	$AC_{(20)}$	Ξ	11 18	30-216	0.868	0.903	13	14 1	174-232	0.937	0.929
SG39	KJ486486	F: M13-GAAGTCTGAATGCTGGAGAACC R: AAGCGTACTGTTTGCTCCCC	60	ATC ₍₁₅₎	2	11 18	88-191	0.094	0.097	2	14 1	176–197	0.751	0.714
Anneal	ing temperature (T _A), nu	mber of alleles (A), number of individuals screened (N),	expected (H	H _E) and obser	rved (H _O) he	sterozygos	ities are	reported	for G	unnise	on and Grea	ater Sage	-grouse

Table 1 Characterization of 13 polymorphic microsatellite loci developed for Gunnison Sage-grouse

D Springer

Author's personal copy

Conservation Genet Resour

 a Significant deviation from Hardy–Weinberg equilibrium ($\alpha=0.05)$

 $^{\rm b}$ Frequency of null alleles >0.05

dNTP, 1X GoTaq Flexi Buffer (Promega), 1.5 mM MgCl₂, 0.03 μ M M13-tailed forward primer, 0.5 μ M non-tailed reverse primer, 0.5 μ M M13 dye-labeled primer with either a 6FAM, VIC, NED, or PET label (Applied Biosystems) and 0.5 U of Taq DNA polymerase (Promega). Amplification conditions were as follows: 94 °C for 2 min, 40 cycles of 94 °C for 1 min, annealing temperature (Table 1) for 1 min and 72 °C for 1 min, then 60 °C for 45 min and a final extension at 72 °C for 10 min. The PCR products were run on an AB3500 Genetic Analyzer (Applied Biosystems). All loci were run with 600LIZ size standard (Applied Biosystems) and analyzed using GeneMapper v4.1 (Applied Biosystems).

For each polymorphic locus, we calculated observed heterozygosity $(H_{\rm O})$, expected heterozygosity $(H_{\rm E})$ and null allele frequencies using CERVUS 1.0 (Marshall et al. 1998). GENEPOP version 3.4 (Raymond and Rousset 2000) was used to test for evidence of linkage disequilibrium and deviations from Hardy-Weinberg equilibrium. The number of alleles per locus ranged from 2 to 12 for Gunnison Sagegrouse and from 3 to 13 for Greater Sage-grouse, and single locus heterozygosities ranged from 0.097 to 0.903 for Gunnison Sage-grouse and from 0.462 to 1.000 for Greater Sage-grouse (Table 1). Significant deviations from Hardy-Weinberg equilibrium were observed at one locus for Gunnison Sage-grouse and at 2 loci for Greater Sagegrouse (Table 1). High null allele frequencies were detected at one locus for Gunnison Sage-grouse and at 5 loci for Greater Sage-grouse (Table 1). We found no evidence of linkage disequilibrium for Gunnison or Greater Sagegrouse after a Bonferroni correction was applied (P < 0.000128). While these microsatellites were designed for use in describing fine scale genetic data for Gunnison Sage-grouse, they also work well for Greater Sage-grouse and could be used for landscape genetic, population genetic, or unique identification of individuals for both species.

Acknowledgments The use of any trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Appendix: Microsatellite sequences for Gunnison Sagegrouse (*Centrocercus minimus*)

SG21

TGTTCCCTTTGCCCTTGCAGTACTCTGTAACCTGCC TTTTGCTTTTTA

SG23

SG26

SG27

TATCCCTACCTCAGCTTAAGGACTTATTAACTT AGTAACTTAAGGACACTTATACCACAGGGGAAGG ACAGACTGGCGTCGTACAACAACACAGGTCATTA GCACACACACACACACACACACACACACAG AGGATACATCTTGGCCCTGTGTGTTTCCTCAGGGC AATGGAAAAGCAGAGGTAGGGATA

SG29

SG30

SG31

SG33

SG34

SG36

SG38

SG39

References

- Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7(2):e30953. doi:10.1371/journal.pone. 0030953
- Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655
- Oyler-McCance SJ, Kahn NW, Burnham KP, Braun CE, Quinn TW (1999) A population genetic comparison of large- and smallbodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers. Mol Ecol 8:1457–1465
- Oyler-McCance SJ, St. John J, Taylor SE, Apa AD, Quinn TW (2005) Population genetics of Gunnison sage-grouse: implications for management. J Wildl Manag 69:630–637
- Raymond M, Rousset F (2000) GENEPOP version 3.4. http://wbiomed. curtin.edu.au/genepop