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Abstract
Purpose: The veiled chameleon (Chamaeleo calyptratus) is an emerging model

system for studying functional morphology and evolutionary developmental biol-

ogy (evo-devo). Chameleons possess body plans that are highly adapted to an arbo-

real life style, featuring laterally compressed bodies, split hands/ft for grasping, a

projectile tongue, turreted independently moving eyes, and a prehensile tail.

Despite being one of the most phenotypically divergent clades of tetrapods, geno-

mic resources for chameleons are severely lacking.

Methods: To address this lack of resources, we used RNAseq to generate 288 mil-

lion raw Illumina sequence reads from four adult tissues (male and female eyes and

gonads) and whole embryos at three distinct developmental stages. We used these

data to assemble a largely complete de novo transcriptome consisting of only

82 952 transcripts. In addition, a majority of assembled transcripts (67%) were suc-

cessfully annotated.

Results: We then demonstrated the utility of these data in the context of studying

visual system evolution by examining the content of veiled chameleon opsin genes

to show that chameleons possess all five ancestral tetrapod opsins.

Abbreviations: AnoCar2.0, annotated Anolis carolinensis protein sequence dataset; BLAST, Basic Local Alignment Search Tool; BLASTp, protein
query/protein database; BLASTx, nucleotide query/protein database; bp, base-pairs; BUSCO, Benchmarking universal single copy orthologs; CIPRES,
Cyberinfrastructure for Phylogenetic Research; DRAP, De novo RNAseq Assembly Pipeline; GO, Gene Ontology; NCBI, National Center for Biotechnology
Information; ONEWAY, one-way BLASTp searches against protein database; ORF, open reading frame; RBB, Reciprocal Best BLAST; RNAseq, RNA
sequencing; SRA, NCBI Short Read Archive..
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Conclusion: We present this de novo, annotated, multi-tissue transcriptome assem-

bly for the Veiled Chameleon, Chamaeleo calyptratus, as a resource to address a

range of evolutionary and developmental questions. The associated raw reads and

final annotated transcriptome assembly are freely available for use on NCBI and

Figshare, respectively.
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1 | INTRODUCTION

The veiled chameleon (Chamaeleo calyptratus) has become
an increasingly important model system for studying devel-
opment and evolution1–4 As a member of the Cham-
aeleonidae, this species represents an intriguing and valuable
example of a species with a terrestrial tetrapod body plan
adapted to an arboreal ecology, highlighted by their laterally
compressed bodies, zygodactyl (split) hands/ft for grasping,
projectile tongue, turreted, independently moving eyes, and
prehensile tail.5 Ecologically, chameleons have undergone
evolutionary shifts from inhabiting the forest floor to becom-
ing highly adapted for an arboreal lifestyle,6 which has
entailed several major shifts in morphology and ecophysiol-
ogy, including the evolution of: complex coloration and
patterning,7,8 a 4-fold variability in body size ranging from
some of the smallest amniotes to the largest climbing
lizards,5 (Diaz and Trainor, 2015), diverse reproductive life
histories (ranging from live birth to egg-laying, and diapause
at the early gastrula stage at oviposition),9 sexually dimor-
phic traits,10 and sex determination mechanisms.11,12

Additionally, we have recently developed the ability to sex
early-embryonic material,11 priming further developmental
studies of sexual development. Indeed, despite great potential
as a model system due to being one of the most phenotypically
divergent clades of tetrapods, the current lack of genome-scale
resources are hindering the utility of C. calyptratus as a model
organism in evolutionary developmental biology.3 Thus, to
help fill this gap, we sequenced, assembled, and annotated a
freely available multi-tissue transcriptome resource for the
veiled chameleon that includes sampling of multiple tissues,
multiple sexes, and multiple developmental time points.
This transcriptome resource represents the fourth trans-
criptome for an Acrodont reptile, families Chamaeleonidae13

and Agamidae,14,15 and provides a valuable resource for evo-
lutionary developmental biology studies;3 such as facilitating
the development of RNA probes for in situ hybridization
experiments,16 for comparative studies of differential gene
expression throughout ontogeny,17 and for studies of gene
and genome evolution.18

2 | RESULTS

We assessed our final transcriptome assembly using three
transcriptome benchmarking methods: TransRate [v1.01]19

within DRAP; Benchmarking Universal Single-Copy Ortho-
logs (BUSCO) [v2.0]20 with three databases using the
gVolante Web service [v1.2.0];21 and internally validated
our assembly by mapping raw Illumina reads back to the
final meta assembly. The TransRate assembly score is a cal-
culated geometric mean of contig scores multiplied by the
ratio of input raw reads that provide support for a given
assembly.19 This score attempts to capture the reliability of
what was assembled and the completeness of the assembly.
Our assembly queried a total of 70% of reference AnoCar2.0
peptides, which provided 24 921 conditional Reciprocal
Best BLAST (RBB) hits, to generate a modest TransRate
score of 0.1678.

Next, we used BUSCO to validate the completeness of our
assembly against 3 different databases using the gVolante
webservice:21 tetrapoda, vertebrata, and core vertebrate genes
(CVG). Indeed, our assembly, when compared against a data-
base of conserved single-copy orthologs from tetrapods (3950
genes) and vertebrates (2586 genes), achieved a BUSCO score
of 92.6% and 95.94%, respectively. Furthermore, when com-
pared against the CVG database (233 genes), our assembly
possesses 99.14% complete copies of this gene set (ie, missing
2 genes). When comparing this latter score with other de novo
squamate transcriptomes analyzed by means of gVolante, it
is only exceeded by one the Madagascar ground gecko
(Paroedura picta), which contained 100% of CVG dataset.22

Notably, our assembly significantly outperforms the previ-
ously published Chamaeleo chamaeleon transcriptome,13

which achieved a modest score of 42.92%. In addition to its
completeness, we internally validated our final assembly by
mapping reads back to our transcriptome using bwa
[v0.7.17]23 and calculated mapping statistics using bamtools
[v2.5.1]. We successfully mapped 91.91% of our raw reads
back to the final transcriptome assembly. This percent of
mapped reads exceeds the average for a Trinity-only de novo
assembly of 87%,24 indicating that this transcriptome is well-
assembled and is representative of the total input data used.
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2.1 | Transcriptome utility

To illustrate the utility of our transcriptome assemblies, we
queried the assembly for a small number of transcripts
expected a priori to be present in the sequenced tissues. For
example, the combined transcriptome included mRNA from
adult chameleon eyes, and we, therefore, expected visual
opsins to be present in the assembly. The ancestral amniote
opsin complement consisted of five opsin genes, expressed
in one of two cell types: vertebrate rhodopsin (RH1) in rod
cells; long wavelength-sensitive opsin (LWS), short-wave
sensitive 1 (SWS1), short-wave sensitive 1 (SWS2), and
RH1-like 2 (RH2) in cone cells.25 Several amniote lineages,
however, have deviated from this ancestral complement and
have lost one of more of their visual opsins.25–31 Many cha-
meleon species are both brightly colored and sexually
dimorphic; thus, color vision presumably plays an important
role in natural and sexual selection.7,8

We created a BLAST database of the assembled trans-
criptome in Geneious [v11.0.3]32 and queried the database
with the five visual opsins from the Anolis genome.33 We
found a match with low E-values for each query. We created
a phylogenetic dataset of visual opsin coding regions that
included the C. calyptratus opsins, opsins from 17 other amni-
ote species, and Xenopus. We used pineal opsins (OPNP)
from five amniote species as an outgroup. Sequences were
aligned using MUSCLE [v3.8.425]32,34 and we reconstructed
a maximum-likelihood phylogeny using RAxML-HPC
BlackBox [v8.2.9]35 implemented on the CIPRES Science
Gateway.36 Nodal support was estimated using rapid boo-
tstrapping with RAxML's automatic bootstopping function,
which stopped after 150 pseudo-replicates.37

Similar to birds and non-gecko lizards (eg, Anolis,
Pogona, Shinisaurus, and Ophisaurus), we discovered that
C. calyptratus possesses all five ancestral opsins that were
present in the most recent common ancestor of tetrapods
(Figure 1). Phylogenetic relationships among the five visual
opsin gene families were consistent with other recently pub-
lished trees;27,30,38 for each of the five opsins, C. calyptratus
sequences formed a clade with orthologous Pogona sequences,
which reflects the close phylogenetic affinity of agamids
and chameleons as sister taxa.39,40 Of interest, in SWS1 we
also identified the presence of a phenylalanine at residue 86
(sensu)41 that is indicative of UV sensitivity in C. calyptratus,
which is consistent with the presence of a UV sensitive
pigment described in this species.42

3 | DISCUSSION

We present an annotated, multi-tissue transcriptome for the
Veiled Chameleon, Chamaeleo calyptratus. Our analyses
suggest that this resource provides a valuable and reasonably

comprehensive catalog of transcripts for this species, as well
as for comparative analyses with other vertebrates. Indeed,
this transcriptome assembly contains over 90% of the
benchmarking genes in three different gene ortholog data-
bases and all five opsin genes present in the ancestor to all
tetrapods. Furthermore, the availability of these data provides
new important resources to address a range of evolutionary
and developmental questions. For example, squamate reptiles
remain the largest clade (�10 000 species) in which neural
crest cell development has not been studied to any considerable

FIGURE 1 A maximum-likelihood phylogenetic reconstruction
of the visual opsins of C. calyptratus and other tetrapods, including:
vertebrate rhodopsin (RH1), long wavelength-sensitive opsin (LWS),
short-wave sensitive 1 (SWS1), short-wave sensitive 2 (SWS2), and
RH1-like 2 (RH2)
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degree.3 Neural crest cells comprise a migratory progenitor
cell population and are considered a conduit through
which evolution drives variation and morphological inno-
vation.43,44 Chameleons represent one of the most phenotypi-
cally divergent clades of tetrapods, and this transcriptome
contains annotated transcripts of standard neural crest cell
markers including, tfap2, foxd3, snai1, snai2, sox9,
sox10, zeb2.

In the future, this resource should, therefore, provide
important insights into body plan evolution for a taxon with
a modified cranial skeleton and complex skin pigmentation.
Thus, this transcriptome will be a valuable resource to the
scientific community by facilitating the development of
RNA probes and their use in comparative studies of differen-
tial gene expression throughout ontogeny, for comparative
studies of gene and genome evolution, in the annotation and
editing of genome(s), and analyses of gene function.

4 | EXPERIMENTAL PROCEDURES

4.1 | Samples

We extracted RNA from seven distinct tissues from seven dif-
ferent C. calyptratus individuals, and prepared RNAseq
libraries using two preparation methods. First, we extracted
RNA from three whole embryos preserved in RNA later using
the Qiagen RNeasy Mini Kit and manufacturer's protocol.
The embryonic ages corresponded to phenotypic landmarks:
(a) Gastrula (embryonic day �65), (b) early somite stage
(�15 somites; �77 embryonic days), and (c) early limb bud
stage (�84 days of development) incubated at 26-28�C.5

RNA was pooled from all three stages into a single RNAseq
library for sequencing. Embryo RNAseq library preparation
was outsourced to SeqWright [now NeoGenomics] (Houston,
TX). These libraries were constructed using a non-stranded,
poly-A RNAseq library protocol with TruSeq universal
adapters. We also extracted RNA from four adult tissues: one
male eye and testis, and one female eye and ovary, all stored
in TRIzol and frozen at −80�C immediately after removal.
We followed a modified version of an RNA extraction proto-
col for extracting RNA from TRIzol preserved tissue.45

Briefly, TRIzol preserved tissue was homogenized with a
plastic disposable pestle over a �7-min period at room tem-
perature to allow for complete dissociation of nucleoprotein
complexes. Then, we added chloroform and centrifuged at
4�C, mixed the aqueous phase with equal parts 70% EtOH,
and transferred to a Qiagen RNeasy Mini kit for purification.
We prepared RNAseq libraries using the KAPA Stranded
mRNA-Seq Kit for Illumina Platforms (KR0960 [v5.17])
using oligo-dT beads for mRNA enrichment. These four
libraries were prepared and indexed separately.

4.2 | Sequencing

The embryo and adult tissue libraries were sequenced on an
Illumina HiSeq 2500 at SeqWright (Houston, TX) (paired-
end 100 bp reads) and at the Medical College of Wisconsin
(Milwaukee, WI) (paired-end 125 bp reads), respectively.
Total Illumina data included 287 739 976 paired sequencing
reads (the number of reads for each tissue is listed in
Table 1). Quality statistics and scores from raw data were
calculated using FastQC software.46

4.3 | Transcriptome assembly

We assembled a de novo transcriptome using the De novo
RNA-Seq Assembly Pipeline (DRAP) [v1.91],47 which is a
compilation of assembly and quality control scripts using sev-
eral software packages. Briefly, DRAP uses Trinity [v2.4.0]48

to trim, normalize, and assemble raw Illumina reads into a de
novo transcriptome. This Trinity assembly is then edited, fil-
tered, mapped, compacted, and quality assessed using a series
of tools within DRAP: seqclean [v2011.02.22],49 cd-hit
[v4.6],50 TGICL [v2.1],51 TransDecoder [v2.0.1],52 bwa
[v0.7.15],23 eXpress [v1.5.1],53 BlatSuite [v34.0],54 and
Exonerate [v2.2.0].55 Overall, DRAP uses these tools to gen-
erate an assembled transcriptome with less redundancy,
without compromising the completeness or quality of the
assembly. Reference peptide sequences provided for reference
mapping in all assemblies and assessment reports were from
the Green Anole (Anolis carolinensis)33 downloaded from
Ensembl (AnoCar2.0). We assembled transcripts from the

TABLE 1 Individual, sample tissue, sex, raw-read pair data, and accompanied NCBI SRA accession numbers for the raw sequence data used
in this study

Individual Tissue Sex Read length Number of raw-read pairs Accession numbers

TG2597 Eye M 126 43 558 381 SAMN08358867

TG2785 Testis M 126 25 988 093 SAMN08358868

TG2872 Eye F 126 30 562 533 SAMN08358869

TG2786 Ovary F 126 16 701 737 SAMN08358870

– Embryos – 100 170 929 232 SAMN08358871

Total 287 739 976 PRJNA429753
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embryos and adult tissues, separately (Table 2). Then, we
merged these two assemblies and filtered redundant tran-
scripts using the runMeta function in DRAP. We used the
runAssessment function in DRAP to generate quality scores
and assembly statistics on all three assemblies. Our final com-
bined transcriptome contained 82 952 transcripts with a total
length of 124 660 559 base-pairs (bp), with transcripts rang-
ing from 201 bp to 27 699 bp in length (Table 3).

4.4 | Assembly annotation

We used TransDecoder [v4.0.0]56 to identify candidate open
reading frames (ORFs; coding-regions) within the de novo
transcripts we assembled. We used several homology-based
searches to annotate these proteins with gene identities, which
were stored in a Trinotate SQLite database [v3.0.2]:57 (1)
HMMer58 search against pfam database [v31.0],59 (2) BLASTp
and BLASTx searches against the SwissProt database (31 Jan
2018 release), and (3) both Reciprocal Best BLAST (RBB;
e-value threshold of 1e-3) and one-way BLASTp (ONEWAY;
e-value threshold of 1e-5) searches against protein models for
AnoCar2.0. The annotation report is provided in Table 4.
FASTA formatted data file headers were edited before and after
Trinotate annotation to produce our final transcriptome file
using SeqKit software package [v0.7.2].60

4.5 | Data availability

Sequence data are available in the NCBI SRA (Table 1) and
associated with BioProject PRJNA429753. All three trans-
criptome assemblies (embryo, tissue, and combined assembly)
are available in the Figshare repository associated with this arti-
cle; as is the SQLite database associated with the transcriptome
annotations Pinto BJ, doi:10.6084/m9.figshare.7327067.v2.
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