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Abstract.—Despite the ubiquitous use of statistical models for phylogenomic and population genomic inferences, this model-
based rigor is rarely applied to post hoc comparison of trees. In a recent study, Garba et al. derived new methods for
measuring the distance between two gene trees computed as the difference in their site pattern probability distributions.
Unlike traditional metrics that compare trees solely in terms of geometry, these measures consider gene trees and associated
parameters as probabilistic models that can be compared using standard information theoretic approaches. Consequently,
probabilistic measures of phylogenetic tree distance can be far more informative than simply comparisons of topology and/or
branch lengths alone. However, in their current form, these distance measures are not suitable for the comparison of species
tree models in the presence of gene tree heterogeneity. Here, we demonstrate an approach for how the theory of Garba et al.
(2018), which is based on gene tree distances, can be extended naturally to the comparison of species tree models. Multispecies
coalescent (MSC) models parameterize the discrete probability distribution of gene trees conditioned upon a species tree
with a particular topology and set of divergence times (in coalescent units), and thus provide a framework for measuring
distances between species tree models in terms of their corresponding gene tree topology probabilities. We describe the
computation of probabilistic species tree distances in the context of standard MSC models, which assume complete genetic
isolation postspeciation, as well as recent theoretical extensions to the MSC in the form of network-based MSC models that
relax this assumption and permit hybridization among taxa. We demonstrate these metrics using simulations and empirical
species tree estimates and discuss both the benefits and limitations of these approaches. We make our species tree distance
approach available as an R package called pSTDistanceR, for open use by the community. [Hypothesis testing; information
theory; model comparison; species tree estimation.]

Quantifying the degree of dissimilarity between
phylogenetic tree structures has long been of interest to
both mathematicians and evolutionary biologists alike.
In particular, considerable attention has been directed
toward characterizing the geometry of phylogenetic
tree space and developing theoretical and empirical
frameworks for measuring the distance between two
trees (Estabrook et al. 1985; Kim 2000; Moulton and Steel
2004; Owen 2011; Shi et al. 2013; Kuhner and Yamato
2015). Molecular systematic studies now routinely
employ distance measures to quantify variation within
sets of trees and assess statistical confidence (or lack
thereof) when summarizing and comparing analyses.
For example, phylogeneticists often want to compare
trees estimated using different data sets and/or
analytical approaches, which can potentially provide
insight into underlying sources of phylogenetic conflict
(e.g., Castoe et al. 2009; Reddy et al. 2017). This is
important because, despite the increase in accuracy
predicted to coincide with the ever-increasing size of
phylogenomic data sets, phylogenetic estimates often
vary greatly from study-to-study, and many species-level
relationships remain as contentious as ever (Reddy et al.
2017; Shen et al. 2017; Walker et al. 2018). Robust methods
for measuring phylogenetic distance can be used to
dissect the causes and consequences such variation, and
thus, their utility is increasingly evident in the face of
widespread phylogenetic conflict that has persisted—

and sometimes amplified—in the age of genome-scale
data sets.

A number of tree distance measures have been
proposed, including the Robinson–Foulds metric
(Robinson and Foulds 1979, 1981), quartet distance
(Estabrook et al. 1985), the geodesic or Billera–Holmes–
Vogtmann (BHV) metric (Billera et al. 2001; Owen and
Provan 2011), and many others. Traditionally, these
approaches view phylogenetic trees strictly in terms of
their geometric properties—that is, only the branching
structure (i.e., topology) and/or branch lengths are
considered when comparing two trees. Although these
measures are usually rapid to compute and benefit
from relatively straightforward interpretations (e.g.,
the Robinson–Foulds metric measures the number of
shared splits between a pair of trees), many are also
paradoxically restricted by their own dependence on
a strictly geometric perspective of trees. Ironically, in
contrast to the relative simplicity of tree comparison
approaches, tremendous effort has been directed
toward understanding phylogenetic trees as probability
generating models over the past decades—particularly
in the analysis of genetic sequence data. From this
model-based viewpoint, we consider the molecular
evolutionary processes occurring along branches of a
phylogeny that ultimately determine the probability of
observing a particular pattern of nucleotides (or amino
acids) at a single site. In other words, a phylogenetic
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tree model parameterizes the probability distribution
of site patterns as a function of the topology, branch
lengths, and other parameters relevant to the nucleotide
substitution process (i.e., relative substitution rates,
equilibrium base frequencies). Accordingly, rather than
a depiction of tree space solely in terms of topology
and/or branch lengths, a probabilistic phylogenetic
model is most appropriately identified by a set of points
in the space of site patterns, which has been referred
to as “phylogenetic oranges” or “hyperdimensional
oranges” (Kim 2000; Moulton and Steel 2004).

Viewing phylogenies as probabilistic models instead
of solely geometric structures suggests that potentially
far greater information can be incorporated for the
comparison of trees. For these reasons, Garba et al. (2018)
proposed the use of probabilistic model-based distances
to compare two trees by measuring the distance
between their site pattern probability distributions.
Unlike traditional measures based solely on topology
and/or branch lengths, these measures effectively
incorporate information encoded by parameters of
the nucleotide substitution process. As predicted,
probabilistic measures can be more informative than
traditional topology or branch-length based distances
(i.e., Fig. 2 of Garba et al. 2018). For example, two trees
with exactly the same topology and branch lengths
can yield very different site pattern probabilities if the
nucleotide substitution parameters differ substantially,
and conversely, trees with different topologies can
exhibit similar site pattern distributions depending
on these parameters. In either case, measuring the
distance between two trees in terms of their site
pattern probability distributions is likely to illuminate
important differences that may be overlooked or
obscured when only conducting simple comparisons of
topologies. Importantly, this model-based perspective
of trees also forms the foundation of likelihood-based
methods, such as maximum likelihood estimation and
Bayesian inference that have become cornerstones of
contemporary molecular phylogenetics. Thus, there is
an intuitive link between probabilistic phylogenetic
inference and the probabilistic phylogenetic distance
measures of Garba et al. (2018), such that trees can
be directly compared within the same model-based
framework used to estimate them.

Although the distance measures of Garba et al.
(2018) mark a significant advancement toward more
informative distance metrics, they are inherently
limited in one fundamental aspect: they only measure
distance between gene trees, not species trees per
se. Species trees, rather than gene trees, depict the
evolutionary relationships among organisms, and thus,
reconstructing species-level relationships is the primary
goal of most phylogenetic studies (Maddison 1997;
Nichols 2001; Rannala and Yang 2003). The distinction
between gene trees and species trees is critical when
computing phylogenetic distances because individual
gene trees may bear little resemblance to one another
and with the species tree (Nichols 2001; Degnan and
Rosenberg 2009). Incomplete lineage sorting (ILS) is

perhaps the most pervasive and well-studied source
of gene tree heterogeneity that is notorious for its
ability to challenge species tree accuracy (Maddison
1997; Nichols 2001; Degnan and Salter 2005; Edwards
2009; Edwards et al. 2016). The multispecies coalescent
(MSC) model was developed to accommodate ILS by
merging phylogenetics and coalescent theory into a
unified framework that models the evolution of gene
trees imbedded within a species tree (Maddison 1997;
Nichols 2001; Rannala and Yang 2003). A species tree
model parameterizes the probability distribution of gene
trees conditioned upon the species-level topology and
set of divergence times in coalescent units (with one
coalescent time unit to be 2Ne generations where Ne is
the effective population size). Under the MSC, therefore,
gene trees are permitted to vary from locus-to-locus
as a result of the coalescent process occurring within
branches of a species tree, and accordingly, site pattern
probability distributions may also vary. The probabilistic
metrics proposed by Garba et al. (2018) effectively
ignore such variation because trees are constrained
to a single topology when computing and comparing
site pattern probabilities and thus, they cannot be
used in their current form to measure the distance
between two species tree models. These measures can
be used to quantify the distance between any two gene
trees, however, this provides only indirect (if inefficient)
information about species-level distances. Only when
all gene trees share the same topology, branch lengths,
and substitution parameters will these measures directly
translate to species tree comparisons. Fundamentally, the
probabilistic phylogenetic distances proposed by Garba
et al. (2018) therefore represent gene tree distances that
are largely invalid for the comparison of species tree
models in the presence of gene tree heterogeneity.

Another unique challenge arises when biological
processes yield phylogenetic tree structures that are
not strictly bifurcating. In particular, substantial effort
has been directed toward developing models that
incorporate hybridization events among species in the
form of phylogenetic networks (Huson and Bryant
2005; Nakhleh 2010; Degnan 2018; Zhu and Degnan
2017). To model both ILS and hybridization, theoretical
work has extended the MSC to derive network-based
species models that depict hybridization events as
interconnecting edges in the species tree (Degnan 2018;
Zhu and Degnan 2017). In addition to a species topology
and set of divergence times (in coalescent units), the
presence of hybridization events in the species tree may
also modulate gene tree probabilities. Much remains
unknown about the space of phylogenetic networks,
and it is not always clear how network distances
should be computed because many existing metrics,
including the probabilistic gene tree distances of Garba
et al. (2018), as well as topology-based metrics (i.e.,
Robinson–Foulds distances), are typically designed to
measure strictly bifurcating trees and therefore must
be modified to be relevant for reticulating species
trees (Cardona et al. 2009; Nakhleh 2010; Degnan
2018). One particularly relevant concern for network

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article-abstract/69/1/194/5488962 by guest on 11 D

ecem
ber 2019



Copyedited by: TP MANUSCRIPT CATEGORY: Points of View

[19:46 22/11/2019 Sysbio-OP-SYSB190031.tex] Page: 196 194–207

196 SYSTEMATIC BIOLOGY VOL. 69

model selection and inference involves the issue of
identifiability: two networks can be mathematically or
even practically indistinguishable because they induce
identical (or nearly so) probability distributions on gene
tree topologies (Zhu and Degnan 2017). Although many
have been generalized to networks, existing distance
metrics often assume a distance of zero when comparing
two networks that display the same topology when
removing a subset of hybridization edges, even if their
gene tree distributions differ (Cardona et al. 2009;
Degnan 2018). Collectively, these findings suggest that a
model-based approach may prove particularly relevant
and useful for measuring species network distances
because such an approach should, in theory, be able
to detect differences (or a lack of differences) in the
underlying gene tree probabilities.

In this study, we discuss and demonstrate how the
principles and theory of the probabilistic gene tree
distance measures proposed by Garba et al. (2018) can be
generalized for the computation of species tree distances.
To derive analogous measures for computing species
tree distances, we employ the MSC to parametrize
the probability distribution of gene tree topologies
conditioned upon a specific species tree and set of
divergence times (in coalescent units). Just as Garba et al.
(2018) viewed gene trees as parametric models that can
be compared in terms of their site pattern probability
distributions; here, we measure the distance between
two gene tree probability distributions induced by their
respective species tree models under the MSC. We first
briefly describe the gene tree distances of Garba et al.
(2018) followed by a modification of these measures to
species tree distances. We then demonstrate the utility
of this approach using several examples of the MSC.
Finally, we apply these measures to more complex
network-based species models that present particularly
challenging problems for phylogenetic model selection
and inference.

MATERIALS AND METHODS

Probabilistic Species Tree Distances
The probabilistic Gene Tree Distance (pGTD)

measures proposed by Garba et al. (2018) compare two
gene trees in terms of the difference in their site pattern
probability distributions. Importantly, site patterns are
considered independently and identically distributed
(i.i.d.) in the computation of pGTD—meaning that gene
tree topologies and/or branch lengths do not vary for
a given tree. In the presence of gene tree heterogeneity,
pGTD measures will not equate to species tree distances
because they constrain gene trees to a single topology,
branch lengths, and other parameters. However, we can
leverage the same principles of Garba et al. (2018) to
derive probabilistic species tree distances by substituting
species-level parameters into these same equations.
See the Supplementary Materials (available on Dryad
at http://dx.doi.org/10.5061/dryad.rh4172f). and the

original study (Garba et al. 2018) for a detailed treatment
of probabilistic gene tree distances, which provides a
basis for computing species tree distances in a similar
manner.

Here, we describe how these principles can be
used to derive probabilistic Species Tree Distances
(pSTD), whereby the goal is to compare species-level
relationships, rather than individual gene trees. Just
as Garba et al. (2018) viewed gene trees as probability
generating models, here, we leverage the MSC model to
measure the distance between two species trees in terms
of their probability distributions on gene topologies.

Under the standard MSC (i.e., lineages remain
genetically isolated), a species tree model ϕ={T,�}
with n extant species defines a discrete probability
distribution of all possible gene tree topologies Gn as a
function of the species topology (T) and set of divergence
times (�) in coalescent units. If only a single lineage
is sampled per species, the total number of possible
rooted gene tree topologies is |Gn|= (2n−3)!

2n−2
(
n−2

)! , and the

probability of a particular topology g in Gn is computed
as a function of the species tree model: P(g|ϕ={T,�}).
To derive species tree distances, we replace terms in the
equations of Garba et al. (2018) to reflect species models
ϕ and their associated gene tree topology probability
distributions (Equations provided in the Supplementary
Materials available on Dryad). The distance between
two species tree models ϕ1 ={T1,�1} and ϕ2 ={T2,�2} is
computed as:

d
(
ϕ1,ϕ2

)=d
(
P(Gn|T1,�1),P(Gn|T2,�2)

)
, (1)

where P(Gn|T1,�1) is the probability distribution of gene
tree topologies given the model parameters ϕ1(likewise
for ϕ2) and d

(
ϕ1,ϕ2

)
can represent the Hellinger distance

(dH), the Kullback–Leibler distance (dKL), or the Jensen–
Shannon distance (d2

JS), shown below in equations (2–4):

dH
(
ϕ1,ϕ2

)2 = 1
2

∑
g�Gn

(√
P
(
g|ϕ1

)−√P
(
g|ϕ2

))2
, (2)

dKL
(
ϕ1,ϕ2

)= ∑
g�Gn

P
(
g|ϕ1

)×log

(
P
(
g|ϕ1

)
P
(
g|ϕ2

)
)

, (3)

d2
JS
(
ϕ1,ϕ2

)= 1
2

dKL

(
P
(
g|ϕ1

); P
(
g|ϕ1

)+P
(
g|ϕ2

)
2

)

+1
2

dKL

(
P
(
g|ϕ2

); P
(
g|ϕ1

)+P
(
g|ϕ2

)
2

)
. (4)

We have implemented these equations in an R software
package (pSTDistancesR) that uses HYBRID-COAL (Zhu
and Degnan 2017) to calculate gene tree topology
probabilities (see Software Availability section). These
equations are effectively the same equations proposed
by Garba et al. (2018) except that gene tree and
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substitution parameters have been replaced by species-
level parameters. For each possible genealogy in Gn,
we record the difference in the probability of that
genealogy between two species tree models and sum
these differences across gene tree space using equations
(1–4). For example, consider two four species tree models
ϕ1 and ϕ2. In this case, there is a total of |G4|= (8−3)!

24−2
(
4−2

)! =
15 possible gene tree topologies, and for each topology
in this set G4, we measure the difference between
its probabilities under ϕ1 and ϕ2 using equations
(2–4). By implementing the MSC in such a manner,
we are effectively incorporating information about the
coalescent process running along branches of the species
tree model when computing distances. For example, two
species trees can have the exact same topology (i.e., T1 =
T2= Robinson–Foulds distance of zero) but very different
gene tree distributions depending on the branch lengths,
which determine the probability that a pair of lineages
coalesce within a particular species branch. We also
note that the Kullback–Leibler distance is not a true
metric because it is not symmetric (i.e., dKL

(
ϕ1,ϕ2

) �=
dKL

(
ϕ2,ϕ1

)
) and does not satisfy the triangle equality

(see Supplementary Materials available on Dryad for
more information)—this is a fundamental property of
the Kullback–Leibler distance that is relevant to any of its
applications, including the original gene tree distances
of Garba et al. (2018). Despite this limitation, we include
the Kullback–Leibler distance here because of its wide
use for model comparison, particularly in the field of
systematics.

For the purposes of this study, we primarily discuss
the computation of pSTD on species trees with relatively
fewer tips (<10), for which probabilistic distances can be
computed analytically using equations (2–4). However,
the total number of possible gene tree topologies |Gn|
can be tremendous for larger species trees, and these
distances can be estimated using simulations in a manner
similar to Garba et al. (2018). For example, we can obtain
a sample of m gene topologies from each species tree
and approximate the Hellinger and Kullback–Leibler
distance between ϕ1 and ϕ2 as:

d∗
H
(
ϕ1,ϕ2

)2
�1−

(
1

2m

) m∑
i=1

(√
P
(
gi,ϕ1 |ϕ2

)
P
(
gi,ϕ1 |ϕ1

)+
√

P
(
gi,ϕ2 |ϕ1

)
P
(
gi,ϕ2 |ϕ2

)
)

, (5)

d∗
KL
(
ϕ1,ϕ2

)� 1
m

m∑
i=1

log

(
P
(
gi,ϕ1 |ϕ1

)
P
(
gi,ϕ1 |ϕ2

)
)

. (6)

To explore potential advantages and disadvantages of
pSTD in relation to other metrics, we computed pSTD
in two scenarios: a pair of bifurcating species trees with
the same topology and branch lengths that only differ
by a scaling factor � (Fig. 1a vs. b), and a pair of species
trees with the same topology and branch lengths that are
identical except for one internal branch that is scaled by �
(Fig. 1a vs. c). These scenarios represent similar examples

to those shown in Figures 2 and 3a of Garba et al. (2018)
in which either a single branch or all branches of gene
trees were scaled by a factor when comparing pGTD
and BHV metrics. For the first scenario, we consider
two bifurcating species tree models ϕ1 ={T1,�1} and
ϕ2 ={T2,�2} that share the same topology (i.e., T1 =
T2), but the branch lengths of the second model ϕ2are
obtained by scaling the branch lengths of ϕ1 by a factor
�, such that �2 =��1 (Fig. 1a vs. b). Similarly, in the
second scenario, only the length of the internal branch
for the second species tree is scaled by � (Fig. 1c). To
explore the properties of pSTD under varying degrees
of ILS, we specify ϕ1 to the following (in newick format):
“(((A:1,B:1):1,C:2):1,D:3)” and we allow � to vary from
0 to 10.

Probabilistic Distances as a Framework for Comparing
Increasingly Complex Species Tree Models

While comparing gene tree topology distributions
under MSC models is the primary focus of this study,
we argue that this approach could be extended to
incorporate and compare species tree models that
include other evolutionary processes, such as migration,
hybridization, recombination, and selection, among
others. Here, we demonstrate two potential extensions
of our pSTD approach: 1) reticulating species tree
models and 2) nucleotide site pattern probabilities. In
the previous section, we have applied a simplistic and
commonly used interpretation of the MSC, whereby
species are assumed to diverge in genetic isolation
from one another in the absence of gene flow,
natural selection, migration, hybridization, or any other
evolutionary process. That is, the probability of a
gene tree topology (used to compute the distances of
equations 2–6) is only a function of the species tree
topology and branch lengths in coalescent units, such
that all gene tree topology heterogeneity is assumed
to arise from ILS. Recent work has expanded the MSC
to accommodate hybridization with the development
of Network Multispecies Coalescent (NMSC) models
(Degnan 2018; Zhu and Degnan 2017). The NMSC can
be incorporated into our pSTD equations to compute
the distances between network species models that
include hybridization edges. For example, the species
model ϕ can include a network topology (instead of a
strict bifurcating tree) and other parameters associated
with the timing and duration of hybridization. Species
models with different network topologies can therefore
be compared with one another, and with models that do
not include hybridization. To explore the utility of pSTD
for comparing complex phylogenetic structures, we
computed probabilistic distances between two species
tree networks (Fig. 2a vs. b), and separately between
a network and a bifurcating tree (Fig. 2a vs. c).
These networks (Fig. 2a,b) were chosen because they
present particularly challenging problems for network-
inference and distance computation, and were used
in recent studies of network models (Degnan 2018;
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FIGURE 1. Species tree models and phylogenetic distances for two scenarios of branch scaling. The first species tree model is shown in (a), which
was used to obtain the second species model (b) by scaling all branch lengths by a factor �. The Hellinger (dH ), BHV (dBHV ), Jensen-Shannon
(dJS), and Kullback–Leibler (dKL) distances between (a) and (b) are shown in plot (d). Similarity, the length of a single internal branch in species
tree (a) was scaled by � to obtain the species tree shown in (c). Plot (d) shows the distances across a range of � when comparing (a) and (c). Note
that in all cases, the Robinson–Foulds distance is zero (i.e., topologies are identical).

Zhu and Degnan 2017). In the first scenario, the two
different species networks display the same tree after
removal of hybridization edges that differentiate the two
networks. As before, we let the edge lengths of ϕ2 scale
by a factor � that ranges from 0 to 10. In a second
example, we use pSTD to compute the distance between
a network (Fig. 2a) and a bifurcating species tree model
(Fig. 2c).

Another example extension of these distances is the
incorporation of mutational processes that give rise
to molecular sequence data. For example, probabilistic
distances may also incorporate site pattern probabilities
that are contingent upon the gene tree distributions,
thereby providing a natural comparison to the gene tree
distances of Garba et al. (2018). We demonstrate the
utility of incorporating mutation into the probabilistic
species tree distances by computing pSTD between two
species tree models (Fig. 3a vs. b) across a range of
branch scaling values to obtain the second tree (Fig. 3b).
For these examples we use a mutation rate of �=10−5

under the four-state JC69 model (Jukes and Cantor 1969)
using the site pattern probability equations and example

species trees provided in Chifman and Kubatko (2015),
and a scaled population size parameter �=2Ne�=0.10
for all branches in the model (Fig. 3).

Four Empirical Demonstrations of Probabilistic Species Tree
Distances

We applied our probabilistic species tree distance
measures to four different empirical examples that
included: 1) quantifying variation within a set of
species tree estimates obtained using resampling
procedures (i.e., bootstrapping) across different genomic
regions, 2) comparing species trees estimated using
different methods and/or data sets, 3) dissecting
contentious estimates of phylogenetic relationships,
and 4) characterizing a Bayesian posterior probability
distribution of species tree model estimates obtain
via Markov Chain Monte Carlo (MCMC) sampling.
For the first and second demonstrations, we used the
avian phylogenomic analyses (Jarvis et al. 2014) as
an example, because this data set has been used as
a case study for understanding the performance of
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(a) and (b) are shown in plot (d). Plot (e) shows the same probabilistic distances computed across a range of � when comparing (a) and the
bifurcating species tree model shown in (c).
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tree (b).
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species tree estimation methods on genome scale data
sets (Mirarab et al. 2014; Liu and Edwards 2015) and
for dissecting causes of phylogenetic conflict (Reddy
et al. 2017). We downloaded a set of 14,446 estimated
gene trees and a set of 32 species tree topologies
that were estimated in the original study (i.e., Jarvis
et al. 2014) or estimated in previous studies (i.e., Prum
et al. 2015a), which allowed us to compare species tree
estimates across different data sets and approaches.
We pruned these trees down to eight focal taxa that
represent challenging and contentious problems for
resolution of the avian phylogeny: bald eagle (Haliaeetus
leucocephalus), barn owl (Tyto alba), speckled mousebird
(Colius striatus), cuckoo roller (Leptosomus discolor),
downy woodpecker (Picoides pubescens), carmine bee-
eater (Merops nubicus), rhinoceros hornbill (Buceros
rhinoceros), and bar-tailed trogon (Apaloderma vittatum).
For all analyses, probabilistic distances between species
trees were computed analytically using equations (1–4).

For the first demonstration, we quantified variation
among sets of bootstrapped species trees that were
estimated from different chromosomes. For each of
the five first chromosomes of the chicken genome
(Gallus_gallus-5.0; GCA_000002315.3; Warren et al.
2017), we obtained a set containing all available gene
trees that were estimated in Jarvis et al. (2014) for
that chromosome, and we used these gene tree sets
to conduct nonparametric bootstrap resampling (with
10 replicates) independently for each chromosome
using MP-EST (Liu et al. 2010). In other words, we
obtained 10 bootstrapped species tree estimates for
chromosome one, and so on, for each of the five largest
autosomes using their respective gene tree sets. We
used multidimensional scaling (MDS) of the Hellinger
distance (computed analytically using equation 4),
and the R package TREESPACE (Jombart et al. 2017)
to characterize variability among chromosome-scale
species tree estimates in the phylogenetic placement
of avian lineages. In the second demonstration, we
computed pairwise species tree distances between 32
different estimates of the avian phylogeny. These 32
different estimates were obtained using different data
sets, models, methods, and studies, and were analyzed
in the context of the original genome-scale inferences
of Jarvis et al. (2014) or subsequent critical reanalysis
of these data (Prum et al. 2015b; Reddy et al. 2017). We
used the program MP-EST (Liu et al. 2010) to estimate
the branch lengths of these species trees in coalescent
units following the general protocol of Jarvis et al. (2014).
We computed pairwise distances between all 32 species
trees, and used these to construct a cluster-based NJ
tree using the R package PHANGORN (Schliep 2011)
to quantify similarities among estimates.

For the third demonstration, we used three case
studies of contentious relationships (Amphibians,
Neoaves, and Reptiles) that were highlighted in a recent
study focused on the causes and consequences of
phylogenetic conflict (Table 1 in Shen et al. 2017). We
downloaded six species trees (shown in Fig. 6) and the

set of 9363 gene trees from the original study (Shen et al.
2017), which we used to estimate the branch lengths
of species trees in coalescent units using MPEST. We
computed probabilistic distances between each of the
three species tree pairs, as well as both the rooted
and unrooted Robinson–Fould distances, and the BHV
metric. For the fourth application, we used an example
data set for estimating species-level relationships of
Canids using Bayesian species tree estimation with
the program StarBEAST2 (Ogilvie et al. 2017). We
downloaded the CanisPhylogeny-example.xml file from
the “example files” that are provided with StarBEAST2,
and ran the MCMC chain for a total of 6000 iterations
using this example file. We sequentially sampled 10
species tree estimates every 1000 generations (total of 60),
and computed the pairwise Hellinger distances between
all 60 species tree estimates using Equation 2.

RESULTS

Scaling Species Divergence Times
Comparing species tree distances across an array

of branch scaling factors highlights the benefits
of incorporating gene tree probability distributions
for comparing and contrasting species tree distance
measures (Fig. 1). In the comparison of two bifurcating
species trees with the same topology and branch lengths
that only differ by a scaling factor � (Fig. 1a vs. b),
probabilistic distance measures show little resemblance
to the BHV metric across an array of values for �
(Fig. 1d). Scaling branch lengths by � results in complex
differences in the underlying gene tree probability
distributions that are reflected by differences in the
probabilistic measures shown in Figure 1, while the
Robinson–Foulds distance is zero in all cases for trees
shown in Figures 1 and 2. In contrast, the BHV metric
simply scales linearly with �, while the Hellinger,
Kullback–Leibler, and Jensen–Shannon distances exhibit
more complex relationships. In the second scenario for
which only a single branch of ϕ2 is scaled by � (i.e.,
all other branches remain unchanged; Fig. 1a vs. c), we
observe similar trends with pSTD that provide more
informative comparisons between two trees (Fig. 1e).
The Hellinger and Jensen–Shannon distance metrics
exhibit asymptotic trends toward their respective limits
(Fig. 1d,e), suggesting diminishing impacts of branch
length scaling on gene tree probability distributions with
larger values of �.

Comparing More Complex Species Tree Models Using pSTD
Probabilistic network distances are able to compare

complex species tree structures, and we demonstrate
that here across two examples: between two species tree
networks that display the same tree (after removal of
hybridization edges that differentiate the two networks;
Fig. 2a vs. 2b), and between a network and a
bifurcating tree (Fig. 2a vs. 2c). pSTD computed in
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both scenarios reveal the effects of branch scaling on
network distances (Fig. 2d), and the potential utility of
pSTD for comparing a network with a bifurcating tree
(Fig. 2e). As with the examples shown in Figure 1, we
see that the Hellinger and Jensen–Shannon distances
appear to exhibit asymptotic behavior as the edge length
differences increase between species models. However,
the Kullback–Leibler distance, which is not a metric
(i.e., it is asymmetric and does not satisfy the triangle
inequality), increases far more rapidly, particularly
when comparing a network and a bifurcating topology
(Fig. 2e).

Although we have primarily focused on comparing
gene tree distributions, we also show how nucleotide
site pattern probabilities can be incorporated into the
distance computations to demonstrate an additional
extension of the species tree distance approach.
Comparing two species tree models (Fig. 3a vs. b) in
terms of their site pattern probability distributions under
the MSC model + four-state JC69 model highlight the
ability for pSTD approaches to effectively incorporate
mutational processes when comparing phylogenetic
models (Fig. 3c). As before, we see that the BHV metric
simply scales linearly as species trees differentiate. For
example, the probabilistic distances shown in Figure 3
exhibit complex shifts in slope as the internal branch
lengths of the species tree become more distant. As
before, the Robinson–Foulds distance is zero in all cases.
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FIGURE 4. Multidimensional scaling of the pairwise Hellinger
distances (Equation 2) between bootstrap estimates of species trees
obtained for the first five chromosomes (10 bootstrap replicates per
chromosome) of the chicken genome. Bootstrapping was conducted
using all available gene trees for each respective chromosome. Tree
symbols and groups coloring based on chromosome.

Four Empirical Applications of pSTD
In our first example application of pSTD, variation

in key nodes of the avian phylogeny was quantified
by comparing distances between bootstrap replicates
estimated from different chromosomes (Fig. 4). This
was visualized using MDS (Hillis et al. 2005) of the
Hellinger distance (Equation 2), providing a detailed
depiction of the bootstrap sampling space of species
trees across chromosomes, highlighting both differences
and similarities among chromosomes in species tree
estimates (Fig. 4). For example, species tree estimates
derived from chicken chromosome 3 show greater
variation that those derived from chromosome 2, while
estimates from chromosomes 4 and 5 show substantial
overlap with one another.

Our second empirical application demonstrated pSTD
by applying these distances to quantify variation in
avian species tree estimates inferred from different data
subsets, models, and inferential approaches (Jarvis et al.
2014; Prum et al. 2015a; Reddy et al. 2017). Clustering
of species tree estimates based on pSTD (i.e., Hellinger
distance, Equation 2) are markedly different than those
based on Robinson–Foulds distances alone (Fig. 5a vs.
b), and more informative (i.e., the collapsed nodes
in Fig. 5b provide no additional information). Our
clustering of species trees based on pSTD differs notably
from the results shown in Reddy et al. (2017) previously
used to characterize and understand conflict among
species trees estimated using different data sets (i.e.,
Fig. 6 of Reddy et al. 2017). Perhaps the most apparent
contradiction between our clustering results based on
pSTD and other metrics is the disparate clustering
of species trees obtained using the so-called heuristic
“statistical binning” approaches, which attempt to build
longer supergenes prior to gene tree estimation (Mirarab
et al. 2014), and all other metrics (Fig. 5a). For example,
the “unbinned” intron and total evidence (“TENT”)
species trees formed a cluster distant from “binned”
analyses of these same data sets based on pSTD (Fig. 5a),
and conversely, the “binned” and “unbinned” analyses
of these two data sets cluster together when compared
using the Robinson–Foulds metric (Fig. 5b). pSTD-based
clustering also highlights major discrepancies in the
placement of the “PRUM 2015” tree, suggesting very
different gene tree probability distributions between this
tree and the “binning” trees estimated in Jarvis et al.
(2014). For example, the Hellinger distance (Equation 2)
suggests that the “PRUM 2015” tree and the unbinned
analyses are more similar to one another (Fig. 5a), yet
the Robinson–Fould metric indicates that the topology
of this tree is identical to the tree obtained in Jarvis
et al. (2014) using the “binned” analysis of introns
(Fig. 5b).

We used pSTD to explore species tree distances for
several vertebrate clades that included contentious
relationships based on previous studies as a third
empirical application of pSTD. These analyses
demonstrate that probabilistic measures of species
tree distance can be particularly useful for enabling
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FIGURE 5. Clustering of species tree distances computed between 32 estimates of the avian phylogeny using the Hellinger pSTD (a) and
Robinson–Foulds metric (b). Dendrograms were generated using the NJ algorithm with midpoint rooting, and tree names were obtained from
the original study and reflect the particular data set used (i.e., exons, introns, total nucleotide evidence “TENT”) and approach (i.e., “unbinned”
vs. “binned” MP-EST analyses). The tree inferred in Prum et al. (2015) is highlighted as “PRUM 2015.” Clades were collapsed if the distance was
zero.

more complete dissection of differences in topology and
branch lengths that differentiate contentious species tree
inferences (Fig. 6). In all three test-case examples taken
from Shen et al. (2017), the unrooted Robinson–Foulds
distance is zero, while the various probabilistic measures
effectively compare these contentious estimates in terms
of their gene tree probability distributions. Finally, in
our four demonstration, we used pSTD to characterize a
posterior distribution of species tree estimates sampled
at different times along a single MCMC chain from
a StarBEAST2 run. This example demonstrates well
that pSTD can be particularly useful for dissecting
variation among estimates, and even for testing for
convergence of MCMC chains (Fig. 7). MDS of the
pairwise Hellinger distance indicates that samples
taken earlier in MCMC show greater variation (e.g.,
MCMC Set 1, Fig. 7) compared to samples taken later in
the MCMC consistent with convergence of the MCMC
toward the posterior.

DISCUSSION

Over the past few decades, tremendous effort has
been directed toward understanding phylogenetic trees
as probability generating models on character data.
Indeed, phylogenetic inference is now predominantly
a model-based endeavor, whereby evidence in
support of alternative hypotheses can be assessed
and quantitatively leveraged to estimate parameters

and significance. While the application of model-based
frameworks to statistical inference has become a
cornerstone of contemporary molecular phylogenetics,
model-based approaches for comparing phylogenetic
trees are still in their relative infancy. Given the
ubiquitous use of statistical models for the purpose of
evolutionary inference, it seems ironic that studies rarely
(if ever) conduct a model-based comparison of trees
that were estimated within a model-based framework.
The probabilistic measures proposed by Garba et al.
(2018) improve substantially upon the shortcomings of
previous approaches, but their application is largely
restricted to gene tree comparisons and are not directly
applicable to models of species trees and networks.
Here, we have generalized these approaches to derive
probabilistic species tree distance measures.

Understanding the species-level relationships among
organisms is the primary focus of the majority
of phylogenetic studies, such that gene trees are
typically viewed as “nuisance parameters” because
they often conflict strongly with one another and
may individually provide little insight into the true,
species-level relationships. Gene tree heterogeneity
is widespread in nature and often poses significant
challenges for phylogenetic inference as a result of
different evolutionary processes, including ILS (Heled
and Drummond 2010; Camargo et al. 2012), migration
(Zhang et al. 2011; Qu et al. 2012; Leaché et al.
2014), hybridization (Meng and Kubatko 2009; Zhu and
Degnan 2017), recombination (Lanier and Knowles 2012),
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FIGURE 6. Measuring probabilistic distances between estimates of contentious species tree relationships for three case-studies of animals
from Shen et al. (2017). Cophylo plots show two alternative species tree hypotheses (T1 and T2) for Amphibians (top), Neoaves (middle), and
Reptiles (bottom). Barplots show the Hellinger distance (dH ),), Kullback-Leibler (dKL) distance measured from T1 to T2(dKL(T1,T2)), the Kullback-
Leibler (dKL) measured from T2 to T1(dKL(T2,T1)), the Jensen-Shannon (dJS), the rooted Robinson–Foulds distance (RFrooted), the unrooteed
Robinson–Foulds distance (RFunrooted), and the BHV distance (dBHV ).
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FIGURE 7. MDS of the pairwise Hellinger distances (Equation
2) between six sets of species tree sampled from a Bayesian posterior
distribution of species trees obtained via MCMC. Each of the six sets
consists of 10 species tree sampled sequentially from the posterior
MCMC samples (see text for further details).

and selection (Castoe et al. 2009, 2010; Adams et al.
2018). The impacts of gene tree variation on species
tree estimation have been a central topic of interest for
the past few decades, resulting in the development of
MSC models for accommodating ILS and its associated
gene tree conflicts (Nichols 2001; Rannala and Yang
2003; Heled and Drummond 2010; Edwards et al. 2016).
By implementing the MSC model, pSTD provide a
means for comparing species trees in terms of their
induced gene tree probabilities, which can provide more
information than simple measures of topology and/or
branch lengths of species trees. Species trees are now
commonly estimated within the MSC framework, and
thus, pSTD measures allow species trees to be compared
within the same framework used to estimate them.
Furthermore, we have shown that these probabilistic
measures represent a general framework that is easily
extended for comparing increasingly complex species
tree models that consider other evolutionary processes
in addition to ILS (i.e., Fig. 2 and 3).

Here, we have demonstrated several applications for
pSTD, although many more diverse applications likely
exist, particularly considering that the method itself
can be readily modified to incorporate more complex
versions of the standard MSC model. Importantly,
we demonstrate the utility of pSTD for illuminating
differences in species tree estimates likely driven by
biological, methodological and statistical factors. For
example, in the limited number of applications included
in this study we were able to demonstrate how
using pSTD can illuminate distinct biologically relevant
phylogenetic signal from different chromosomes (Fig. 3),
and also be used to diagnose statistical properties
and variation among species tree estimates sampled

by bootstrapping or from Bayesian MCMC chains
(Figs. 4 and 7). We also demonstrated how pSTD
may be extended to incorporate additional processes,
such as hybridization and mutation which further
increase the flexibility and thus the utility of pSTD.
In one of these demonstrations, we use an extended
form of pSTD to compare among speciation network
hypotheses, and between network-based and bifurcating
species trees (Fig. 2)—both of which represent key
challenges to other methods and priorities for modern
speciation research (Degnan 2018; Zhu and Degnan
2017). Although here, we have focused on the derivation
of species tree distances using gene tree topology
probabilities alone, effectively incorporating full gene
tree probabilities (i.e., including topology and coalescent
time variation) may be useful future extensions of these
distances.

Our example applications of pSTD also highlight the
utility of these distances for dissecting the basis of
variation in species tree inferences derived from different
analytical approaches, data sets, or phylogenetic models
(Fig. 5). In these comparisons that utilize species tree
inferences based on avian phylogenomic data (Jarvis
et al. 2014; Prum et al. 2015a; Reddy et al. 2017),
pSTD measures suggest that a model-based comparison
of species trees can be far more informative than
simple topology and/or branch length comparisons.
Intriguingly, pSTD-based clustering indicated that avian
phylogenomic species tree estimates tend to cluster
together based on the specific method used (i.e.,
the “unbinned” MP-EST analyses clustered separately
from the “binned” analyses in Fig. 5a), rather than
the particular data set used. This result contradicts
clustering based simply on topology alone, which
indicates the species tree estimates obtained using the
same data type are more similar (Fig. 5b). For example,
the TENT (total nucleotide evidence trees) inferred
in Jarvis et al. (2014) exhibited the same topology
regardless of whether the “binned” or “unbinned”
approach was used (Fig. 5b), and yet, these two
species trees induce very different gene tree probability
distributions, which is reflected when computing pSTD
(Fig. 5a). These findings also agree with recent studies
that suggest heuristic species tree approaches may
have particularly strong and misleading influence on
species tree estimation (Liu and Edwards 2015; Roch
et al. 2019; Springer and Gatesy 2016). Therefore, pSTD
comparisons of species tree distributions may provide
insight into the potential effects that species tree methods
may impose on species tree inference that is not
otherwise identified by other measures.

Our example applications of pSTD also highlight
the broad utility of the approach for investigating
model identifiability (or lack of) in several contexts—
a topic that represents a major concern for species tree
estimation (Chifman and Kubatko 2015; Degnan 2018;
Zhu and Degnan 2017). In the context of the MSC,
this means that the number of gene trees required to
distinguish between competing species tree models may
exceed the limits of reasonably sized empirical data sets
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for two models that are practically indistinguishable.
Previous studies have demonstrated that species trees
are identifiably from the distributions of unrooted gene
trees (Allman et al. 2011) and pSTD reflect this property.
The practical ramifications of model identifiability are
critical considerations for empirical studies because
gene trees themselves are always estimated (rather than
known), which introduces another source of potential
error into the problem. The problem of identifiability has
been particularly relevant in the context of reticulating
phylogenetic networks (Degnan 2018; Zhu and Degnan
2017), and our analyses highlight the utility of pSTD
as a tool for understanding model identifiability
of complex species tree models. Indeed, modeling
species hybridization entails numerous challenges for
phylogenetic model selection and inference. If the
number of hybridization events is unbounded, for
example, the space of phylogenetic networks is infinitely
large, suggesting that the size of network space
can be much larger than that of bifurcating trees
(Degnan 2018; Zhu and Degnan 2017). The inherent
difficulties of computing network distances has been
noted by previous authors (Degnan 2018), and several
traditional geometric-based measures, such as the
Robinson–Foulds distance, have been augmented for the
comparison of network topologies (Cardona et al. 2009;
Nakhleh 2010), but make several limiting assumptions.
Here, we have shown that pSTD can be readily extended
for comparing reticulating species trees because it
can determine whether networks are indistinguishable
(i.e., pSTD = 0) or distinguishable (i.e., pSTD >0) in
terms of their gene tree probabilities. For example,
our distance metrics are able to quantify and confirm
previous studies demonstrating the indistinguishability
of networks that display the same topologies when
only a single allele is sampled per species because their
probabilistic distance is zero (Fig. 2d). Additionally,
we have shown that pSTD can be used to measure
the distance between a species network and a strictly
bifurcating model (Fig. 2e). Collectively, these results
suggest that pSTD may provide a particularly valuable
framework for enabling meaningful comparisons of
complex phylogenetic tree structures and a means
for understanding the identifiability of these complex
models—areas of great importance for the continued
development and implementation of more realistic
phylogenetic models.

Although the species tree distance measures discussed
in this study entail several advantages and useful
applications, they also are limited in several key ways.
One key limitation is the higher computational cost
of measuring model-based distances for species trees,
compared to simple topology or related measures, which
would scale with the number of taxa in the tree. For
this study, we have demonstrated these measures using
trees with fewer taxa (i.e., <10) to improve computational
tractability, and for the purpose of understanding the
relationships of specific contentious subclades (i.e.,
Fig. 6). The time taken to compute the 6000 pSTD
shown in Figure 1 was ∼1.5 minutes, while the 6000

computations shown in Figure 2 were completed in
approximately 4 min, both using an Intel(R) Core i5
3.8GHz processor. To measure the distance between
different estimates of the avian phylogeny (Figs. 4
and 5) and for the examples of contentious phylogenetic
estimates (Fig. 6), we increased computational feasibility
by subsampling the phylogeny and computing distances
between subtrees extracted from a larger tree. This
approach is similar to the pruning strategy employed
by Reddy et al. (2017) that compared the phylogenetic
placement of specific “indicator clades.” Another
limitation is the number of lineages sampled per
species. Currently, the software we used to compute
gene tree probabilities under the MSC and NMSC
(i.e., HYBRID-COAL; Zhu and Degnan 2017) provides
gene tree probability distributions conditioned upon a
single individual (i.e., single haploid sequence) sampled
per species, although more complex sampling schemes
should be relatively straightforward to incorporate. One
popular application of the MSC is for conducting species
delimitation to evaluate alternative models of speciation
(i.e., different schemes for lumping or splitting of
individuals into species; Fujita et al. 2012; Yang and
Rannala 2010), and pSTD permit the comparison of
species delimitation models in precise terms of their
gene tree probabilities. Theoretically, internal branch
lengths in the species tree could be set to zero to
compare models that split or lump individuals into
a single species or population. Currently, the pSTD
measures discussed in this study only consider ILS and
hybridization, yet many other evolutionary processes
may generate gene tree heterogeneity. Despite its
limitations, the broad applicability and extendibility
of the pSTD approach argues for its broad value and
utility for addressing biological, methodological, and
statistical questions in the context of the MSC—many
of which were not readily addressed with previous
measures.

CONCLUSIONS

Phylogenetic distance measures have become an
integral part of phylogenetic analyses with broad
applications across the field of evolutionary biology.
Probabilistic measures of tree distances provide an
intuitive framework for comparing model-based
estimates of phylogeny and incorporate inherent
advantages over traditional measures that compare
only topology and branch lengths. Here, we have
generalized the same theory and statistical framework
used for computing gene tree distances to the context
of probabilistic species tree model comparison. This
logical extension of gene tree distances to species tree
models enables a broad spectrum of enhanced model
comparisons that fill an important gap for comparing
species tree models, including nonbifurcating network
models. Indeed, computing network distances has
historically proved difficult, and our demonstrations
here show how probabilistic-based distances can
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be leveraged to compare species networks in the
precise terms of their gene tree probabilities. As
further extensions and advancements improve the
complexity of species tree models, we envision that
these distance measures can provide an increasingly
valuable foundation for comparing models that
incorporate a wide-range of evolutionary processes,
such as migration, recombination, and natural selection.

SOFTWARE AVAILABILITY

We developed an open source software package
pSTDistanceR written in R 3.4.1 (R Core Team 2017)
and C++ that computes the Hellinger, Kullback–Leibler,
and Jensen–Shannon pSTD using Equations 1–6 and the
program HYBRID-COAL (Zhu and Degnan 2017), which
is used to extract gene tree topology probabilities under
both the standard MSC (without hybridization) and
the NMSC. pSTDistanceR is freely available on github:
https://github.com/radamsRHA/pSTDistanceR/. All
scripts used to generate the figures in the study are
provided in the Supplementary Materials available on
Dryad.

SUPPLEMENTARY MATERIALS

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.rh4172f.
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