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In December 2019, a cluster of pneumonia cases epidemiologically 
linked to an open-air live animal market in the city of Wuhan 
(Hubei Province), China1,2 led local health officials to issue an 

epidemiological alert to the Chinese Center for Disease Control 
and Prevention and the World Health Organization’s (WHO) 
China Country Office. In early January, the aetiological agent of 
the pneumonia cases was found to be a coronavirus3, subsequently 
named SARS-CoV-2 by an International Committee on Taxonomy 
of Viruses (ICTV) Study Group4 and also named hCoV-19 by Wu 
et al.5. The first available sequence data6 placed this novel human 
pathogen in the Sarbecovirus subgenus of Coronaviridae7, the same 
subgenus as the SARS virus that caused a global outbreak of >8,000 
cases in 2002–2003. By mid-January 2020, the virus was spreading 
widely within Hubei province and by early March SARS-CoV-2 was 
declared a pandemic8.

In outbreaks of zoonotic pathogens, identification of the infec-
tion source is crucial because this may allow health authorities to 
separate human populations from the wildlife or domestic animal 
reservoirs posing the zoonotic risk9,10. If stopping an outbreak in 
its early stages is not possible—as was the case for the COVID-19 
epidemic in Hubei—identification of origins and point sources is 
nevertheless important for containment purposes in other prov-
inces and prevention of future outbreaks. When the first genome 
sequence of SARS-CoV-2, Wuhan-Hu-1, was released on 10 January 
2020 (GMT) on Virological.org by a consortium led by Zhang6, it 
enabled immediate analyses of its ancestry. Across a large region of 
the virus genome, corresponding approximately to ORF1b, it did 

not cluster with any of the known bat coronaviruses indicating that 
recombination probably played a role in the evolutionary history 
of these viruses5,7. Subsequently a bat sarbecovirus—RaTG13, sam-
pled from a Rhinolophus affinis horseshoe bat in 2013 in Yunnan 
Province—was reported that clusters with SARS-CoV-2 in almost 
all genomic regions with approximately 96% genome sequence 
identity2. Zhou et al.2 concluded from the genetic proximity of 
SARS-CoV-2 to RaTG13 that a bat origin for the current COVID-
19 outbreak is probable. Concurrent evidence also proposed pango-
lins as a potential intermediate species for SARS-CoV-2 emergence 
and suggested them as a potential reservoir species11–13.

Unlike other viruses that have emerged in the past two decades, 
coronaviruses are highly recombinogenic14–16. Influenza viruses 
reassort17 but they do not undergo homologous recombination 
within RNA segments18,19, meaning that origins questions for influ-
enza outbreaks can always be reduced to origins questions for each 
of influenza’s eight RNA segments. For coronaviruses, however, 
recombination means that small genomic subregions can have 
independent origins, identifiable if sufficient sampling has been 
done in the animal reservoirs that support the endemic circula-
tion, co-infection and recombination that appear to be common. 
Here, we analyse the evolutionary history of SARS-CoV-2 using 
available genomic data on sarbecoviruses. We demonstrate that 
the sarbecoviruses circulating in horseshoe bats have complex 
recombination histories as reported by others15,20–26. Despite the 
SARS-CoV-2 lineage’s acquisition of residues in its Spike (S) pro-
tein’s receptor-binding domain (RBD) permitting the use of human 
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ACE2 (ref. 27) receptors and its RBD being genetically closer to a 
pangolin virus than to RaTG13 (refs. 11–13,22,28)—a signal that sug-
gests recombination—the divergence patterns in the S protein do 
not show evidence of recombination between the lineage leading 
to SARS-CoV-2 and known sarbecoviruses. Our results indicate the 
presence of a single lineage circulating in bats with properties that 
allowed it to infect human cells, as previously described for bat sar-
becoviruses related to the first SARS-CoV lineage29–31.

To gauge the length of time this lineage has circulated in bats, we 
estimate the time to the most recent common ancestor (TMRCA) of 
SARS-CoV-2 and RaTG13. We use three bioinformatic approaches 
to remove the effects of recombination, and we combine these 
approaches to identify putative non-recombinant regions that 
can be used for reliable phylogenetic reconstruction and dating. 
Collectively our analyses point to bats being the primary reservoir 
for the SARS-CoV-2 lineage. While it is possible that pangolins, or 
another hitherto undiscovered species, may have acted as an inter-
mediate host facilitating transmission to humans, current evidence 
is consistent with the virus having evolved in bats resulting in bat 
sarbecoviruses that can replicate in the upper respiratory tract of 
both humans and pangolins25,32.

Results
Recombination analysis and identification of breakpoint-free 
genome regions. Among the 68 sequences in the aligned sarbe-
covirus sequence set, 67 show evidence of mosaicism (all Dunn–
Sidak-corrected P < 4 × 10–4 and 3SEQ14), indicating involvement in 
homologous recombination either directly with identifiable paren-
tals or in their deeper shared evolutionary history—that is, due to 
shared ancestral recombination events. This is evidence for numer-
ous recombination events occurring in the evolutionary history 
of the sarbecoviruses22,33; specifying all past events in their correct 
temporal order34 is challenging and not shown here. Figure 1 (top) 
shows the distribution of all identified breakpoints (using 3SEQ’s 
exhaustive triplet search) by the number of candidate recombinant 
sequences supporting them. The histogram allows for the identi-
fication of non-recombining regions (NRRs) by revealing regions 
with no breakpoints. Sorting these breakpoint-free regions (BFRs) 
by length results in two segments >5 kb: an ORF1a subregion span-
ning nucleotides (nt) 3,625–9,150 and the first half of ORF1b span-
ning nt 13,291–19,628 (sequence numbering given in Source Data, 
https://github.com/plemey/SARSCoV2origins). Eight other BFRs 
<500 nt were identified, and the regions were named BFR A–J in 
order of length. Of the nine breakpoints defining these ten BFRs, 
four showed phylogenetic incongruence (PI) signals with bootstrap 
support >80%, adopting previously published criteria on using 
a combination of mosaic and PI signals to show evidence of past 
recombination events19. All four of these breakpoints were also 
identified with the tree-based recombination detection method 
GARD35.

The extent of sarbecovirus recombination history can be illus-
trated by five phylogenetic trees inferred from BFRs or concatenated 
adjacent BFRs (Fig. 1c). BFRs were concatenated if no phylogenetic 
incongruence signal could be identified between them. When view-
ing the last 7 kb of the genome, a clade of viruses from northern China 
appears to cluster with sequences from southern Chinese provinces 
but, when inspecting trees from different parts of ORF1ab, the N. 
China clade is phylogenetically separated from the S. China clade. 
Individual sequences such as RpShaanxi2011, Guangxi GX2013 and 
two sequences from Zhejiang Province (CoVZXC21/CoVZC45), as 
previously shown22,25, have strong phylogenetic recombination sig-
nals because they fall on different evolutionary lineages (with boot-
strap support >80%) depending on what region of the genome is 
being examined.

Despite the high frequency of recombination among bat viruses, 
the block-like nature of the recombination patterns across the 

genome permits retrieval of a clean subalignment for phylogenetic 
analysis. Conservatively, we combined the three BFRs >2 kb identi-
fied above into non-recombining region 1 (NRR1). Removal of five 
sequences that appear to be recombinants and two small subregions 
of BFR A was necessary to ensure that there were no phylogenetic 
incongruence signals among or within the three BFRs. Alternatively, 
combining 3SEQ-inferred breakpoints, GARD-inferred break-
points and the necessity of PI signals for inferring recombination, 
we can use the 9.9-kb region spanning nucleotides 11,885–21,753 
(NRR2) as a putative non-recombining region; this approach is 
breakpoint-conservative because it is conservative in identifying 
breakpoints but not conservative in identifying non-recombining 
regions. Using a third consensus-based approach for identifying 
recombinant regions in individual sequences—with six different 
recombination detection methods in RDP5 (ref. 36)—gives a puta-
tive recombination-free alignment that we call non-recombinant 
alignment 3 (NRA3) (see Methods).

All three approaches to removal of recombinant genomic seg-
ments point to a single ancestral lineage for SARS-CoV-2 and 
RaTG13. Two other bat viruses (CoVZXC21 and CoVZC45) 
from Zhejiang Province fall on this lineage as recombinants of the 
RaTG13/SARS-CoV-2 lineage and the clade of Hong Kong bat 
viruses sampled between 2005 and 2007 (Fig. 1c). Specifically, pro-
genitors of the RaTG13/SARS-CoV-2 lineage appear to have recom-
bined with the Hong Kong clade (with inferred breakpoints at 11.9 
and 20.8 kb) to form the CoVZXC21/CoVZC45-lineage. Sibling lin-
eages to RaTG13/SARS-CoV-2 include a pangolin sequence sam-
pled in Guangdong Province in March 2019 and a clade of pangolin 
sequences from Guangxi Province sampled in 2017.

Because the SARS-CoV-2 S protein has been implicated in 
past recombination events or possibly convergent evolution12, 
we specifically investigated several subregions of the S protein—
the N-terminal domain of S1, the C-terminal domain of S1, the 
variable-loop region of the C-terminal domain, and S2. The 
variable-loop region in SARS-CoV-2 shows closer identity to the 
2019 pangolin coronavirus sequence than to the RaTG13 bat virus, 
supported by phylogenetic inference (Fig. 2). On first examination 
this would suggest that that SARS-CoV-2 is a recombinant of an 
ancestor of Pangolin-2019 and RaTG13, as proposed by others11,22. 
However, on closer inspection, the relative divergences in the phy-
logenetic tree (Fig. 2, bottom) show that SARS-CoV-2 is unlikely to 
have acquired the variable loop from an ancestor of Pangolin-2019 
because these two sequences are approximately 10–15% divergent 
throughout the entire S protein (excluding the N-terminal domain). 
It is RaTG13 that is more divergent in the variable-loop region 
(Extended Data Fig. 1) and thus likely to be the product of recombi-
nation, acquiring a divergent variable loop from a hitherto unsam-
pled bat sarbecovirus28. This is notable because the variable-loop 
region contains the six key contact residues in the RBD that give 
SARS-CoV-2 its ACE2-binding specificity27,37. These residues are 
also in the Pangolin Guangdong 2019 sequence. The most parsi-
monious explanation for these shared ACE2-specific residues is 
that they were present in the common ancestors of SARS-CoV-2, 
RaTG13 and Pangolin Guangdong 2019, and were lost through 
recombination in the lineage leading to RaTG13. This provides 
compelling support for the SARS-CoV-2 lineage being the conse-
quence of a direct or nearly-direct zoonotic jump from bats, because 
the key ACE2-binding residues were present in viruses circulating 
in bats.

Ancestry in non-recombinant regions. Using the most conser-
vative approach to identification of a non-recombinant genomic 
region (NRR1), SARS-CoV-2 forms a sister lineage with RaTG13, 
with genetically related cousin lineages of coronavirus sampled in 
pangolins in Guangdong and Guangxi provinces (Fig. 3). Given 
that these pangolin viruses are ancestral to the progenitor of the 
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RaTG13/SARS-CoV-2 lineage, it is more likely that they are also 
acquiring viruses from bats. While pangolins could be acting as 
intermediate hosts for bat viruses to get into humans—they develop 
severe respiratory disease38 and commonly come into contact with 
people through trafficking—there is no evidence that pangolin 
infection is a requirement for bat viruses to cross into humans.

Phylogenies of subregions of NRR1 depict an appreciable degree 
of spatial structuring of the bat sarbecovirus population across dif-
ferent regions (Fig. 3). One geographic clade includes viruses from 
provinces in southern China (Guangxi, Yunnan, Guizhou and 
Guangdong), with its major sister clade consisting of viruses from 
provinces in northern China (Shanxi, Henan, Hebei and Jilin) as 
well as Hubei Province in central China and Shaanxi Province in 
northwestern China. Several of the recombinant sequences in these 
trees show that recombination events do occur across geographi-

cally divergent clades. The Sichuan (SC2018) virus appears to be 
a recombinant of northern/central and southern viruses, while the 
two Zhejiang viruses (CoVZXC21 and CoVZC45) appear to carry a 
recombinant region from southern or central China.

TMRCA for NRRs of SARS-CoV-2 lineage. To avoid artefacts 
due to recombination, we focused on NRR1 and NRR2 and the 
recombination-masked alignment NRA3 to infer time-measured 
evolutionary histories. Visual exploration using TempEst39 indi-
cates that there is no evidence for temporal signal in these datas-
ets (Extended Data Fig. 2). This is not surprising for diverse viral 
populations with relatively deep evolutionary histories. In such 
cases, even moderate rate variation among long, deep phylogenetic 
branches will substantially impact expected root-to-tip divergences 
over a sampling time range that represents only a small fraction of 
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orange bars show BFRs, with region A (nt 13,291–19,628) showing two trimmed segments yielding region A′ (nt 13,291–14,932, 15,405–17,162, 18,009–19,628). 
Regions B and C span nt 3,625–9,150 and 9,261–11,795, respectively. Concatenated region A′BC is NRR1. Open reading frames are shown above the breakpoint 
plot, with the variable-loop region indicated in the S protein. b, Similarity plot between SARS-CoV-2 and several selected sequences including RaTG13 (black), 
SARS-CoV (pink) and two pangolin sequences (orange). The shaded region corresponds to the S protein. c, Maximum likelihood phylogenetic trees rooted on 
a 2007 virus sampled in Kenya (BtKy72; root truncated from images), shown for five BFRs of the sarbecovirus alignment. Nucleotide positions for phylogenetic 
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show sequences exhibiting phylogenetic incongruence along the genome. S. China corresponds to Guangxi, Yunnan, Guizhou and Guangdong provinces. N. 
China corresponds to Jilin, Shanxi, Hebei and Henan provinces, and the N. China clade also includes one sequence sampled in Hubei Province in 2004.
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the evolutionary history40. However, formal testing using marginal 
likelihood estimation41 does provide some evidence of a temporal 
signal, albeit with limited log Bayes factor support of 3 (NRR1), 10 
(NRR2) and 3 (NRA3); see Supplementary Table 1.

In the absence of a strong temporal signal, we sought to identify a 
suitable prior rate distribution to calibrate the time-measured trees 

by examining several coronaviruses sampled over time, includ-
ing HCoV-OC43, MERS-CoV, and SARS-CoV virus genomes. 
These datasets were subjected to the same recombination masking 
approach as NRA3 and were characterized by a strong temporal 
signal (Fig. 4), but also by markedly different evolutionary rates. 
Specifically, using a formal Bayesian approach42 (see Methods), we 
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estimate a fast evolutionary rate (0.00169 substitutions per site yr–1, 
95% highest posterior density (HPD) interval (0.00131,0.00205)) 
for SARS viruses sampled over a limited timescale (1 year), a 
slower rate (0.00078 (0.00063,0.00092) substitutions per site yr–1) 
for MERS-CoV on a timescale of about 4 years and the slow-
est rate (0.00024 (0.00019,0.00029) substitutions per site yr–1) for 
HCoV-OC43 over almost five decades. These differences reflect 
the fact that rate estimates can vary considerably with the times-
cale of measurement, a frequently observed phenomenon in viruses 
known as time-dependent evolutionary rates41,43,44. Over relatively 
shallow timescales, such differences can primarily be explained by 
varying selective pressure, with mildly deleterious variants being 
eliminated more strongly by purifying selection over longer times-
cales44–46. Consistent with this, we estimate a concomitantly decreas-
ing non-synonymous-to-synonymous substitution rate ratio over 
longer evolutionary timescales: 1.41 (1.20,1.68), 0.35 (0.30,0.41) 
and 0.133 (0.129,0.136) for SARS, MERS-CoV and HCoV-OC43, 
respectively. In light of these time-dependent evolutionary rate 
dynamics, a slower rate is appropriate for calibration of the sarbe-
covirus evolutionary history. We compare both MERS-CoV- and 
HCoV-OC43-centred prior distributions (Extended Data Fig. 3) to 
examine the sensitivity of date estimates to this prior specification.

We infer time-measured evolutionary histories using a Bayesian 
phylogenetic approach while incorporating rate priors based on 
mean MERS-CoV and HCoV-OC43 rates and with standard 
deviations that allow for more uncertainty than the empirical esti-
mates for both viruses (see Methods). Using both prior distribu-
tions, this results in six highly similar posterior rate estimates for 
NRR1, NRR2 and NRA3, centred around 0.00055 substitutions 
per site yr–1. The fact that these estimates lie between the rates for 
MERS-CoV and HCoV-OC43 is consistent with the intermediate 
sampling time range of about 18 years (Fig. 5). The consistency of 

the posterior rates for the different prior means also implies that 
the data do contribute to the evolutionary rate estimate, despite the 
fact that a temporal signal was visually not apparent (Extended Data 
Fig. 2). Below, we report divergence time estimates based on the 
HCoV-OC43-centred rate prior for NRR1, NRR2 and NRA3 and 
summarize corresponding estimates for the MERS-CoV-centred 
rate priors in Extended Data Fig. 4. Divergence time estimates 
based on the HCoV-OC43-centred rate prior for the separate BFRs 
(Supplementary Table 3) show consistency in TMRCA estimates 
across the genome.

The divergence time estimates for SARS-CoV-2 and SARS-CoV 
from their respective most closely related bat lineages are reason-
ably consistent among the three approaches we use to eliminate 
the effects of recombination in the alignment. Using the most 
conservative approach (NRR1), the divergence time estimate for 
SARS-CoV-2 and RaTG13 is 1969 (95% HPD: 1930–2000), while 
that between SARS-CoV and its most closely related bat sequence 
is 1962 (95% HPD: 1932–1988); see Fig. 5. These are in general 
agreement with estimates using NRR2 and NRA3, which result 
in divergence times of 1982 (1948–2009) and 1948 (1879–1999), 
respectively, for SARS-CoV-2, and estimates of 1952 (1906–1989) 
and 1970 (1932–1996), respectively, for the divergence time of 
SARS-CoV from its closest known bat relative. The SARS-CoV 
divergence times are somewhat earlier than dates previously esti-
mated15 because previous estimates were obtained using a collection 
of SARS-CoV genomes from human and civet hosts (as well as a 
few closely related bat genomes), which implies that evolutionary 
rates were predominantly informed by the short-term SARS out-
break scale and probably biased upwards. Indeed, the rates reported 
by these studies are in line with the short-term SARS rates that we 
estimate (Fig. 4). The estimated divergence times for the pango-
lin virus most closely related to the SARS-CoV-2/RaTG13 lineage 
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range from 1851 (1730–1958) to 1877 (1746–1986), indicating that 
these pangolin lineages were acquired from bat viruses divergent to 
those that gave rise to SARS-CoV-2. Current sampling of pangolins 
does not implicate them as an intermediate host.

Discussion
Identifying the origins of an emerging pathogen can be critical dur-
ing the early stages of an outbreak, because it may allow for contain-
ment measures to be precisely targeted at a stage when the number 
of daily new infections is still low. Early detection via genomics 
was not possible during Southeast Asia’s initial outbreaks of avian 
influenza H5N1 (1997 and 2003–2004) or the first SARS out-
break (2002–2003). By 2009, however, rapid genomic analysis had 
become a routine component of outbreak response. The 2009 influ-
enza pandemic and subsequent outbreaks of MERS-CoV (2012), 
H7N9 avian influenza (2013), Ebola virus (2014) and Zika virus 
(2015) were met with rapid sequencing and genomic characteriza-
tion. For the current pandemic, the ‘novel pathogen identification’ 
component of outbreak response delivered on its promise, with 
viral identification and rapid genomic analysis providing a genome 
sequence and confirmation, within weeks, that the December 2019 
outbreak first detected in Wuhan, China was caused by a coronavi-
rus3. Unfortunately, a response that would achieve containment was 
not possible. Given what was known about the origins of SARS, as 
well as identification of SARS-like viruses circulating in bats that 
had binding sites adapted to human receptors29–31, appropriate mea-
sures should have been in place for immediate control of outbreaks 
of novel coronaviruses. The key to successful surveillance is know-
ing which viruses to look for and prioritizing those that can readily 
infect humans47.

The difficulty in inferring reliable evolutionary histories for 
coronaviruses is that their high recombination rate48,49 violates the 
assumption of standard phylogenetic approaches because different 

parts of the genome have different histories. To begin characterizing 
any ancestral relationships for SARS-CoV-2, NRRs of the genome 
must be identified so that reliable phylogenetic reconstruction and 
dating can be performed. Evolutionary rate estimation can be pro-
foundly affected by the presence of recombination50. Because there 
is no single accepted method of inferring breakpoints and identify-
ing clean subregions with high certainty, we implemented several 
approaches to identifying three classic statistical signals of recom-
bination: mosaicism, phylogenetic incongruence and excessive 
homoplasy51. Our most conservative approach attempted to ensure 
that putative NRRs had no mosaic or phylogenetic incongruence 
signals. A second breakpoint-conservative approach was conserva-
tive with respect to breakpoint identification, but this means that 
it is accepting of false-negative outcomes in breakpoint inference, 
resulting in less certainty that a putative NRR truly contains no 
breakpoints. A third approach attempted to minimize the number 
of regions removed while also minimizing signals of mosaicism and 
homoplasy. The origins we present in Fig. 5 (NRR1) are conserva-
tive in the sense that NRR1 is more likely to be non-recombinant 
than NRR2 or NRA3. Because the estimated rates and divergence 
dates were highly similar in the three datasets analysed, we con-
clude that our estimates are robust to the method of identifying a 
genome’s NRRs.

Due to the absence of temporal signal in the sarbecovirus data-
sets, we used informative prior distributions on the evolution-
ary rate to estimate divergence dates. Calibration of priors can be 
performed using other coronaviruses (SARS-CoV, MERS-CoV 
and HCoV-OC43), but estimated rates vary with the timescale of 
sample collection. In the presence of time-dependent rate variation, 
a widely observed phenomenon for viruses43,44,52, slower prior rates 
appear more appropriate for sarbecoviruses that currently encom-
pass a sampling time range of about 18 years. Our approach resulted 
in similar posterior rates using two different prior means, implying 
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that the sarbecovirus data do inform the rate estimate even though 
a root-to-tip temporal signal was not apparent.

The relatively fast evolutionary rate means that it is most appro-
priate to estimate shallow nodes in the sarbecovirus evolutionary 
history. Accurate estimation of ages for deeper nodes would require 
adequate accommodation of time-dependent rate variation. While 
such models have recently been made available, we lack the infor-
mation to calibrate the rate decline over time (for example, through 
internal node calibrations44). As a proxy, it would be possible to 
model the long-term purifying selection dynamics as a major 
source of time-dependent rates43,44,52, but this is beyond the scope of 
the current study. The assumption of long-term purifying selection 
would imply that coronaviruses are in endemic equilibrium with 
their natural host species, horseshoe bats, to which they are presum-
ably well adapted. While there is evidence of positive selection in the 
sarbecovirus lineage leading to RaTG13/SARS-CoV-2 (ref. 53), this 
is inferred to have occurred before the divergence of RaTG13 and 
SARS-CoV-2 and thus should not influence our inferences.

Of importance for future spillover events is the appreciation that 
SARS-CoV-2 has emerged from the same horseshoe bat subgenus 
that harbours SARS-like coronaviruses. Another similarity between 
SARS-CoV and SARS-CoV-2 is their divergence time (40–70 years 
ago) from currently known extant bat virus lineages (Fig. 5). This 
long divergence period suggests there are unsampled virus lineages 
circulating in horseshoe bats that have zoonotic potential due to 
the ancestral position of the human-adapted contact residues in the 
SARS-CoV-2 RBD. Without better sampling, however, it is impos-
sible to estimate whether or how many of these additional lineages 
exist. While there is involvement of other mammalian species—
specifically pangolins for SARS-CoV-2—as a plausible conduit for 
transmission to humans, there is no evidence that pangolins are facil-
itating adaptation to humans. A hypothesis of snakes as intermediate 
hosts of SARS-CoV-2 was posited during the early epidemic phase54, 
but we found no evidence of this55,56; see Extended Data Fig. 5.

With horseshoe bats currently the most plausible origin of 
SARS-CoV-2, it is important to consider that sarbecoviruses cir-
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culate in a variety of horseshoe bat species with widely overlap-
ping species ranges57. Nevertheless, the viral population is largely 
spatially structured according to provinces in the south and 
southeast on one lineage, and provinces in the centre, east and 
northeast on another (Fig. 3). This boundary appears to be rarely 
crossed. Two exceptions can be seen in the relatively close rela-
tionship of Hong Kong viruses to those from Zhejiang Province 
(with two of the latter, CoVZC45 and CoVZXC21, identified as 
recombinants) and a recombinant virus from Sichuan for which 
part of the genome (region B of SC2018 in Fig. 3) clusters with 
viruses from provinces in the centre, east and northeast of China. 
SARS-CoV-2 and RaTG13 are also exceptions because they were 
sampled from Hubei and Yunnan, respectively. The fact that they 
are geographically relatively distant is in agreement with their 
somewhat distant TMRCA, because the spatial structure suggests 
that migration between their locations may be uncommon. From 
this perspective, it may be useful to perform surveillance for more 
closely related viruses to SARS-CoV-2 along the gradient from 
Yunnan to Hubei.

It is clear from our analysis that viruses closely related to 
SARS-CoV-2 have been circulating in horseshoe bats for many 
decades. The unsampled diversity descended from the SARS-CoV-2/
RaTG13 common ancestor forms a clade of bat sarbecoviruses with 
generalist properties—with respect to their ability to infect a range 
of mammalian cells—that facilitated its jump to humans and may 
do so again. Although the human ACE2-compatible RBD was very 
likely to have been present in a bat sarbecovirus lineage that ulti-
mately led to SARS-CoV-2, this RBD sequence has hitherto been 
found in only a few pangolin viruses. Furthermore, the other key 
feature thought to be instrumental in the ability of SARS-CoV-2 
to infect humans—a polybasic cleavage site insertion in the S pro-
tein—has not yet been seen in another close bat relative of the 
SARS-CoV-2 virus.

The existing diversity and dynamic process of recombination 
amongst lineages in the bat reservoir demonstrate how difficult 
it will be to identify viruses with potential to cause major human 
outbreaks before they emerge. This underscores the need for a 
global network of real-time human disease surveillance systems, 
such as that which identified the unusual cluster of pneumonia 
in Wuhan in December 2019, with the capacity to rapidly deploy 
genomic tools and functional studies for pathogen identification 
and characterization.

Methods
Dataset compilation. Sarbecovirus data. Complete genome sequence data were 
downloaded from GenBank and ViPR; accession numbers of all 68 sequences are 
available in Supplementary Table 4. Sequences were aligned by MAFTT58 v.7.310, 
with a final alignment length of 30,927, and used in the analyses below.

HCoV-OC43. We compiled a dataset including 27 human coronavirus OC43 virus 
genomes and ten related animal virus genomes (six bovine, three white-tailed deer 
and one canine virus). The canine viral genome was excluded from the Bayesian 
phylogenetic analyses because temporal signal analyses (see below) indicated that 
it was an outlier.

MERS-CoV. We extracted a similar number (n = 35) of genomes from a 
MERS-CoV dataset analysed by Dudas et al.59 using the phylogenetic diversity 
analyser tool60 (v.0.5).

SARS-CoV. We compiled a set of 69 SARS-CoV genomes including 58 sampled 
from humans and 11 sampled from civets and raccoon dogs. This dataset 
comprises an updated version of that used in Hon et al.15 and includes a cluster 
of genomes sampled in late 2003 and early 2004, but the evolutionary rate 
estimate without this cluster (0.00175 substitutions per site yr–1 (0.00117,0.00229)) 
is consistent with the complete dataset (0.00169 substitutions per site yr–1, 
(0.00131,0.00205)).

Sarbecovirus, HCoV-OC43 and SARS-CoV data were assembled from 
GenBank to be as complete as possible, with sampling year as an inclusion 
criterion. MERS-CoV data were subsampled to match sample sizes with 
SARS-CoV and HCoV-OC43.

Recombination analysis. Because coronaviruses are known to be highly 
recombinant, we used three different approaches to identify non-recombinant 
regions for use in our Bayesian time-calibrated phylogenetic inference.

First, we took an approach that relies on identification of mosaic regions 
(via 3SEQ14 v.1.7) that are also supported by PI signals19. Because 3SEQ is the 
most statistically powerful of the mosaic methods61, we used it to identify the 
best-supported breakpoint history for each potential child (recombinant) sequence 
in the dataset. A single 3SEQ run on the genome alignment resulted in 67 out of 
68 sequences supporting some recombination in the past, with multiple candidate 
breakpoint ranges listed for each putative recombinant. Next, we (1) collected 
all breakpoints into a single set, (2) complemented this set to generate a set of 
non-breakpoints, (3) grouped non-breakpoints into contiguous BFRs and (4) 
sorted these regions by length. A phylogenetic tree—using RAxML v8.2.8 (ref. 
62,63), the GTR + Γ model and 100 bootstrap replicates—was inferred for each BFR 
>500 nt.

We considered (1) the possibility that BFRs could be combined into larger 
non-recombinant regions and (2) the possibility of further recombination within 
each BFR.

We named the length-sorted BFRs as: BFR A (nt positions 13,291–19,628, 
length = 6,338 nt), BFR B (nt positions 3,625–9,150, length = 5,526 nt), BFR C 
(nt positions 9,261–11,795, length = 2,535 nt), BFR D (nt positions 27,702–28,843, 
length = 1,142 nt) and six further regions (E–J). Phylogenetic trees and exact 
breakpoints for all ten BFRs are shown in Supplementary Figs. 1–10. Regions A–C 
had similar phylogenetic relationships among the southern China bat viruses 
(Yunnan, Guangxi and Guizhou provinces), the Hong Kong viruses, northern 
Chinese viruses (Jilin, Shanxi, Hebei and Henan provinces, including Shaanxi), 
pangolin viruses and the SARS-CoV-2 lineage. Because these subclades had 
different phylogenetic relationships in region D (Supplementary Fig. 4), that region 
and shorter BFRs were not included in combined putative non-recombinant 
regions.

Regions A–C were further examined for mosaic signals by 3SEQ, and all 
showed signs of mosaicism. In region A, we removed subregion A1 (nt positions 
3,872–4,716 within region A) and subregion A4 (nt 1,642–2,113) because both 
showed PI signals with other subregions of region A. After removal of A1 and A4, 
we named the new region A′. In addition, sequences NC_014470 (Bulgaria 2008), 
CoVZXC21, CoVZC45 and DQ412042 (Hubei-Yichang) needed to be removed 
to maintain a clean non-recombinant signal in A′. Region B showed no PI signals 
within the region, except one including sequence SC2018 (Sichuan), and thus this 
sequence was also removed from the set. Region C showed no PI signals within 
it. Combining regions A′, B and C and removing the five named sequences gives 
us putative NRR1, as an alignment of 63 sequences. We say that this approach is 
conservative because sequences and subregions generating recombination signals 
have been removed, and BFRs were concatenated only when no PI signals could be 
detected between them. The construction of NRR1 is the most conservative as it is 
least likely to contain any remaining recombination signals.

In our second stage, we wanted to construct non-recombinant regions where 
our approach to breakpoint identification was as conservative as possible. We 
call this approach breakpoint-conservative, but note that this has the opposite 
effect to the construction of NRR1 in that this approach is the most likely to allow 
breakpoints to remain inside putative non-recombining regions. In other words, a 
true breakpoint is less likely to be called as such (this is breakpoint-conservative), 
and thus the construction of a non-recombining region may contain true 
recombination breakpoints (with insufficient evidence to call them as such). 
In this approach, we considered a breakpoint as supported only if it had three 
types of statistical support: from (1) mosaic signals identified by 3SEQ, (2) PI 
signals identified by building trees around 3SEQ’s breakpoints and (3) the GARD 
algorithm35, which identifies breakpoints by identifying PI signals across proposed 
breakpoints. Because 3SEQ identified ten BFRs >500 nt, we used GARD’s (v.2.5.0) 
inference on 10, 11 and 12 breakpoints. A reduced sequence set of 25 sequences 
chosen to capture the breadth of diversity in the sarbecoviruses (obvious 
recombinants not involving the SARS-CoV-2 lineage were also excluded) was used 
because GARD is computationally intensive. GARD identified eight breakpoints 
that were also within 50 nt of those identified by 3SEQ. PI signals were identified 
(with bootstrap support >80%) for seven of these eight breakpoints: positions 
1,684, 3,046, 9,237, 11,885, 21,753, 22,773 and 24,628. Using these breakpoints, the 
longest putative non-recombining segment (nt 1,885–21,753) is 9.9 kb long, and we 
call this region NRR2.

Our third approach involved identifying breakpoints and masking minor 
recombinant regions (with gaps, which are treated as unobserved characters in 
probabilistic phylogenetic approaches). Specifically, we used a combination of 
six methods implemented in v.5.5 of RDP5 (ref. 36) (RDP, GENECONV, MaxChi, 
Bootscan, SisScan and 3SEQ) and considered recombination signals detected by 
more than two methods for breakpoint identification. Except for specifying that 
sequences are linear, all settings were kept to their defaults. Based on the identified 
breakpoints in each genome, only the major non-recombinant region is kept 
in each genome while other regions are masked. To evaluate the performance 
procedure, we confirmed that the recombination masking resulted in (1) a 
markedly different outcome of the PHI test64, (2) removal of well-supported 
(bootstrap value >95%) incompatible splits in Neighbor-Net65 and (3) a 

NATuRE MICROBIOLOgY | www.nature.com/naturemicrobiology

https://www.ncbi.nlm.nih.gov/nuccore/NC_014470
https://www.ncbi.nlm.nih.gov/nuccore/DQ412042
http://www.nature.com/naturemicrobiology


ArticlesNATuRE MiCROBiOlOgy

near-complete reduction of mosaic signal as identified by 3SEQ. If the latter still 
identified non-negligible recombination signal, we removed additional genomes 
that were identified as major contributors to the remaining signal. This produced 
non-recombining alignment NRA3, which included 63 of the 68 genomes.

Bayesian divergence time estimation. We focused on these three 
non-recombining regions/alignments for divergence time estimation; this avoids 
inappropriate modelling of evolutionary processes with recombination on strictly 
bifurcating trees, which can result in different artefacts such as homoplasies that 
inflate branch lengths and lead to apparently longer evolutionary divergence 
times. To examine temporal signal in the sequenced data, we plotted root-to-tip 
divergence against sampling time using TempEst39 v.1.5.3 based on a maximum 
likelihood tree. The latter was reconstructed using IQTREE66 v.2.0 under a general 
time-reversible (GTR) model with a discrete gamma distribution to model 
inter-site rate variation.

Time-measured phylogenetic reconstruction was performed using a Bayesian 
approach implemented in BEAST42 v.1.10.4. When the genomic data included 
both coding and non-coding regions we used a single GTR + Γ substitution model; 
for concatenated coding genes we partitioned the alignment by codon position 
and specified an independent GTR + Γ model for each partition with a separate 
gamma model to accommodate inter-site rate variation. We used an uncorrelated 
relaxed clock model with log-normal distribution for all datasets, except for the 
low-diversity SARS data for which we specified a strict molecular clock model. 
For the HCoV-OC43, MERS-CoV and SARS datasets we specified flexible skygrid 
coalescent tree priors. In the absence of any reasonable prior knowledge on the 
TMRCA of the sarbecovirus datasets (which is required for grid specification 
in a skygrid model), we specified a simpler constant size population prior. As 
informative rate priors for the analysis of the sarbecovirus datasets, we used two 
different normal prior distributions: one with a mean of 0.00078 and s.d. = 0.00075 
and one with a mean of 0.00024 and s.d. = 0.00025. These means are based on the 
mean rates estimated for MERS-CoV and HCoV-OC43, respectively, while the 
standard deviations are set ten times higher than empirical values to allow greater 
prior uncertainty and avoid strong bias (Extended Data Fig. 3). In our analyses 
of the sarbecovirus datasets, we incorporated the uncertainty of the sampling 
dates when exact dates were not available. To estimate non-synonymous over 
synonymous rate ratios for the concatenated coding genes, we used the empirical 
Bayes Renaissance counting’procedure67. Temporal signal was tested using a 
recently developed marginal likelihood estimation procedure41 (Supplementary 
Table 1).

Posterior distributions were approximated through Markov chain Monte Carlo 
sampling, which were run sufficiently long to ensure effective sampling sizes >100. 
BEAST inferences made use of the BEAGLE v.3 library68 for efficient likelihood 
computations. We used TreeAnnotator to summarize posterior tree distributions 
and annotated the estimated values to a maximum clade credibility tree, which was 
visualized using FigTree.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequence data analysed in this manuscript are available at https://github.com/
plemey/SARSCoV2origins. Note that six of these sequences fall under the terms of 
use of the GISAID platform.

Code availability
All custom code used in the manuscript is available at https://github.com/plemey/
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Extended Data Fig. 1 | Phylogenetic relationships in the C-terminal domain (CTD). Posterior means (horizontal bars) of patristic distances between 
SARS-CoV-2 and its closest bat and pangolin sequences, for the spike protein’s variable loop region and CTD region excluding the variable loop. Boxes 
show 95% HPD credible intervals. Means and 95% HPD intervals are 0.080 [0.058–0.101] and 0.530 [0.304–0.780] for the patristic distances between 
SARS-CoV-2 and RaTG13 (green) and 0.143 [0.109–0.180] and 0.154 [0.093–0.231] for the patristic distances between SARS-CoV-2 and Pangolin 2019 
(orange). Gray inset shows majority rule consensus trees with mean posterior branch lengths for the two regions, with posterior probabilities on the key 
nodes showing the relationships among SARS-CoV-2, RaTG13, and Pangolin 2019.
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Extended Data Fig. 2 | Lack of root-to-tip temporal signal in SARS-CoV-2. Root-to-tip divergence as a function of sampling time for non-recombinant 
regions NRR1 and NRR2 and recombination-masked alignment set NRA3. The plots are based on maximum likelihood tree reconstructions with a root 
position that maximises the residual mean squared for the regression of root-to-tip divergence and sampling time.
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Extended Data Fig. 3 | Priors and posteriors for evolutionary rate of SARS-CoV-2. Posterior rate distributions for MERS-CoV (far left) and HCoV-OC43 
(far right) using BEAST on n = 27 sequences spread over 4 years (MERS-CoV) and n = 27 sequences spread over 49 years (HCoV-OC43). As illustrated by 
the dashed arrows, these two posteriors motivate our specification of prior distributions with standard deviations inflated 10-fold (light color). These rate 
priors are subsequently used in the Bayesian inference of posterior rates for NRR1, NRR2, and NRA3 as indicated by the solid arrows.

NATuRE MICROBIOLOgY | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles NATuRE MiCROBiOlOgyArticles NATuRE MiCROBiOlOgy

Extended Data Fig. 4 | TMRCAs for SARS-CoV and SARS-CoV-2. Divergence time estimates based on the three regions/alignments where the effects 
of recombination have been removed. The red and blue boxplots represent the divergence time estimates for SARS-CoV-2 (red) and the 2002-2003 
SARS-CoV (blue) from their most closely related bat virus, with the light- and dark-colored versions based on the HCoV-OC43 and MERS-CoV centered 
priors, respectively. Green boxplots show the TMRCA estimate for the RaTG13/SARS-CoV-2 lineage and its most closely related pangolin lineage 
(Guangdong 2019), with the light and dark coloured version based on the HCoV-OC43 and MERS-CoV centred priors, respectively. TMRCA estimates for 
SARS-CoV-2 and SARS-CoV from their respective most closely related bat lineages are reasonably consistent for the different data sets and different rate 
priors in our analyses. Posterior means with 95% HPDs are shown in Supplementary Information Table 2.
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Extended Data Fig. 5 | Comparisons of gC content across taxa. Conducting analogous analyses of codon usage bias as Ji et al. (2020) with additional 
(and higher quality) snake coding sequence data and several miscellaneous eukaryotes with low genomic GC content failed to find any meaningful 
clustering of the SARS-CoV-2 with snake genomes (a). Instead, similarity in codon usage metrics between the SARS-CoV-2 and eukaryotes analyzed was 
correlated with coding sequence GC content of the eukaryote, with more similar codon usage being identified in eukaryotes with low GC content similar to 
that of the coronavirus (b).
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