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SUPPLEMENTARY NOTE 1 

FRAMEWORK OF CHROMO.CRAWL 2 

Chromo.Crawl is one of the primary functions of PhyloWGA that seeks to test for the presence of 3 

“supergenes” (i.e., contiguous loci with evidence of a shared genealogical history) across whole-4 

genome alignments (WGAs). In this section, we discuss several major benefits of the Chromo.Crawl  5 

framework when compared to standard “statistical binning” procedures (i.e., Mirarab et al. 2014; 6 

Bayzid et al. 2015; Liu and Edwards 2015; Adams and Castoe 2019a) that have been developed for a 7 

similar purpose. Chromo.Crawl acts by “crawling” across a WGA from one genomic window to the 8 

next adjacent one, and for each pair of windows, a likelihood ratio test is applied using 9 

CONCATEPILLAR (Leigh et al., 2008). These two features of Chromo.Crawl (crawling across 10 

contiguous genomic windows and implementing a likelihood ratio test) represent important and distinct 11 

advantages over standard statistical binning procedures, such as the pipelines described in (Mirarab et 12 

al. 2014; Bayzid et al. 2015; Liu and Edwards 2015; Adams and Castoe 2019a,b). 13 

First, the procedure of crawling from one genomic region to the next means that the specific genomic 14 

location and context are considered by Chromo.Crawl. Recombination acts to effectively decouple the 15 

genealogical histories of adjacent loci along a chromosome, such that the genealogical histories of loci 16 

separated by a recombination event will be unlinked. Conversely, two loci will share the same 17 

underlying gene tree in the absence of recombination. Because the probability of crossing over between 18 

two loci is a function of their distance to one another, adjacent loci are more likely to share a common 19 

genealogical history than more distant loci, and the “crawling” behavior of Chromo.Crawl is 20 

effectively designed to incorporate this spatial information while testing for phylogenetic congruency 21 

along a WGA. This procedure is in stark contrast to typical techniques for statistical binning that use 22 
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differences in estimated topologies among gene trees obtained across distant genomic regions and even 23 

chromosomes (Bayzid et al., 2015; Adams and Castoe, 2019). Indeed, the recent studies of Adams and 24 

Castoe (2019a,b) found evidence that standard statistical binning is likely to bias species tree estimates 25 

by incorrectly constructing supergenes from loci sampled from distant genomic regions and diverse 26 

chromosomes.  27 

Another primary advantage of the Chromo.Crawl framework when compared to traditional binning 28 

techniques is the use of a formal likelihood ratio test for assessing evidence of phylogenetic congruency 29 

among loci. CONCATEPILLAR is based on the principles of likelihood ratio tests of topological 30 

congruency, such as Huelsenbeck and Bull (1996), and therefore benefits from the statistical foundation 31 

provided by such tests, lending itself to predictable statistical properties. In comparison, standard 32 

statistical binning pipelines typically use an ad hoc procedure based on differences in topologies among 33 

bootstrap replicates. For standard statistical binning, if the fraction of bootstrap replicates leading to 34 

phylogenetic incongruence is below a certain user-defined cutoff, then the loci are deemed to be 35 

congruent. Chromo.Crawl instead uses CONCATEPILLAR to test whether a model of congruency 36 

(i.e., single genealogical history) or incongruency (i.e., distinct genealogical histories) is a better fit for 37 

a given alignment. If the data support a congruent model for adjacent genomic windows, then the set 38 

of contiguous loci are concatenated together as a supergene, and conversely, the loci are deemed 39 

independent if a model of discordance is supported based on the likelihood ratio.  40 

BENCHMARKING 41 

The computational complexity of the functions of PhyloWGA is highly dynamic and depends upon a 42 

number of factors, including (but not limited to): (1) number of taxa in the WGA, (2) total length of 43 

the WGA, (3) experimental design (i.e., number, length, and spatial distribution of genomic windows), 44 
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(4) evolutionary model complexity (e.g., JC69 versus GTR model versus model selection, and 45 

recombination rate), and (5) particular analysis type (Chromo.Phylome versus Chromo.Crawl). Like 46 

most standard phylogenetic analyses, the complexities of the algorithms scale with both the number of 47 

taxa and the total length of the WGA, whereas the particular experimental design (i.e., distribution of 48 

windows defined by the user) may have dynamic effects on computational speed. For example, 49 

Chromo.Phylome using a single, long window is likely to be faster than if that window is partitioned 50 

into multiple shorter windows because Chromo.Phylome will be applied to each window separately 51 

(i.e., phylogenetic tree model will be fit to each window instead of a single window). The particular 52 

evolutionary model used will also impact the efficiency of PhyloWGA by modulating the number of 53 

parameters estimated for each window. Chromo.Phylome conducts phylogenetic inference across 54 

genomic windows, whereas Chromo.Crawl applies tests of congruency among windows. Thus, the 55 

Chromo.Crawl function will run substantially slower than Chromo.Phylome because it both infers trees 56 

and implements a likelihood ratio test, and thus, the efficiency of Chromo.Crawl will also likely 57 

fluctuate as it crawls along a chromosome.  For example, we ran two versions of Chromo.Phylome on 58 

the primate WGA using a single thread of a 2.8 GHz CPU that represent two different nucleotide model 59 

settings, and we found the following run times: GTR model for all windows (run time of 10.35 hours) 60 

and GTR+Γ model for all windows (run time of 22.07 hours). That is, estimating the shape parameter 61 

of the Γ model of among-site variation approximately doubled the running time for this example. 62 

Additionally, we found that our Chromo.Crawl simulation demonstration (described in the next section 63 

and results shown in Figures S1-S4) of 100 kb alignments ran for an average of approximately 2.4 64 

hours each using a 2.8 GHz CPU with two threads. The Chromo.Phylome analyses for these 100 kb 65 

simulated WGAs were far quicker (i.e., each ran under a minute using a single thread of a 1.7 GHz 66 

Dual-Core Intel Core i7 CPU). 67 

 68 
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In any case, the functions Chromo.Phylome and Chromo.Crawl both provide indications of 69 

computational time required for analyses. For example, Chromo.Phylome provides an estimate of the 70 

total time needed for analysis (based on the first window), and the percentage of total windows that 71 

have been analyzed as the algorithm proceeds along the WGA. Similarly, Chromo.Crawl tracks the 72 

progress of the algorithm by printing the percentage of total windows that have been “crawled” over, 73 

and Chromo.Crawl also allows the user to specify the number of cores with the 74 

“numeric.NumberOfCores” argument. Finally, PhyloWGA now includes a function 75 

Organize.ParallelPhyloWGA that streamlines and organizes WGAs and PhyloWGA scripts for parallel 76 

analyses. This function partitions a WGA into a number of user-defined subsets placed within 77 

directories for easy execution and parallel analysis.  78 

EXPLORING THE ACCURACY OF PHYLOWGA ON SIMULATED WGAS 79 

To explore the accuracy of PhyloWGA, we conducted an array of simulation analyses that are inspired 80 

by the Primate dataset (shown in Figure 1), and that varied in recombination rate r. We simulated 81 

genealogies along 100 kb alignments with the program ms (Hudson, 2002) using a 10-taxon species 82 

tree inspired by the relationships of Human, Chimpanzee, Gorilla, Orangutan, Macaque, Marmoset, 83 

Tarsier, Galago, Lemur, and Rat provided in a previous study (Song, et al., 2012) and three different 84 

recombination rate values (r = 10-9, 10-8, or 10-7 per site per generation). For each genealogy and 85 

associated alignment block output by ms (i.e., subsets of the 100 kb alignment separated by 86 

recombination events), we then simulated nucleotide sequence alignments using the program Seq-Gen 87 

(Rambaut and Grass, 1997) and a HKY model (Hasegawa et al., 1985) with the following parameters: 88 

transition/transversion ratio of 4.6, and base equilibrium frequencies of 0.3 (A), 0.2 (C), 0.2 (G), and 89 

0.3 (T). In our simulations, we used the population-scaled mutation rate ! = 4$% = 0.00104 for a 90 

diploid effective population size $	=104 (Takahata, 1993) and a mutation rate % = 2.6 × 10!" per site 91 



 
 

5 

per generation (Narasimhan et al., 2017). These HKY parameters were inspired by previous studies of 92 

primate relationships and species tree analyses (Burgess and Yang, 2008; Koch and DeGiorgio, 2020). 93 

These resulting simulated alignments were then concatenated together to form a single, 100 kb WGA 94 

fasta file. We next conducted two PhyloWGA analyses: (1) Chromo.Crawl with one kb windows and 95 

step sizes, and (2) using these Chromo.Crawl coordinates of concatenated windows to construct gene 96 

trees using Chromo.Phylome with nucleotide substitution model selection. For each combination of 97 

simulation parameters, we repeated the process nine times, and we plotted Robinson-Foulds (RF) 98 

distances (Robinson and Foulds, 1981) for each nucleotide site between the true simulated genealogies 99 

and their corresponding inferred trees from Chromo.Phylome. Additionally, we plotted the location of 100 

recombination events that resulted in topology swaps (i.e., red lines and dots in Figures S2-S4) and the 101 

location of breakpoints reconstructed with Chromo.Crawl (i.e., alternating light and dark gray blocks 102 

that represent concatenated windows in Figures S2-S4).  103 

As demonstrated with the simulations, the accuracy of PhyloWGA is dynamic in response to the 104 

recombination rate r. For example, the mean RF distance is much lower under the low recombination 105 

rate (r = 10-9 per site per generation) simulations when compared with the high recombination rate (r 106 

= 10-7 per site per generation) scenarios (Figures S1a versus S1c). These results can be observed when 107 

comparing the true, simulated recombination breakpoints that result in topology changes (i.e., red lines 108 

in Figures S2-S4) with the inferred breakpoints recovered by PhyloWGA (alternating light and dark 109 

gray blocks in Figures S2-S4). For example, the inferred and true recombination breakpoints appear to 110 

be more accurately reconstructed with the low recombination simulations (Figure S2) compared to the 111 

high recombination rate simulations (Figure S4). Under the large recombination rate (r = 10-7 per site 112 

per generation), the lengths of recombination-free nucleotide stretches are small because there are a 113 

large number of observed recombination events across the alignment (Figure S4).  114 
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A fundamental goal of Chromo.Crawl, and PhyloWGA more generally, is to improve the accuracy of 115 

chromosome-scale phylogenetic analyses by flexibly and adaptively incorporating information about 116 

gene tree signal and variability of genomic regions. Thus, we sought to understand its performance at 117 

achieving this goal by comparing its accuracy with three alternative strategies that do not consider 118 

evidence for (or against) shared gene trees among adjacent windows: (1) trees inferred across an 119 

alignment using a fixed window size (“FIXED”), (2) trees inferred across random windows without 120 

regards to location (“RANDOM”), and (3) a single tree is inferred by concatenating the entire 100kb 121 

alignment (“CONCAT”), such that gene tree variability is ignored. The RANDOM approach can be 122 

described in three steps: (1) randomly sample a starting site (with uniform probability across the 100kb 123 

alignment) to denote beginning of a window, (2) define the end of a window by the site position that is 124 

located one, two, four, five, 10, or 20 kb downstream of the start site sampled in the previous step, and 125 

(3) this process is repeated 25 times to obtain 25 windows that are positioned randomly throughout the 126 

chromosome. Chromo.Crawl represents an adaptive, genome-informed approach designed to respond 127 

to shared phylogenetic signal (or lack thereof) among adjacent loci, and thus, we predicted that it would 128 

yield more accurate inferences when compared to the either the FIXED or RANDOM procedures, as 129 

well as the CONCAT approach that ignores gene tree variation. We simulated nine 100kb replicate 130 

datasets according to the same procedures as before (i.e., Figures S1-S4), and we applied each of the 131 

four strategies (Chromo.Crawl, FIXED, RANDOM, and CONCAT) across a range of different window 132 

sizes (one, two, four, five, 10, and 20 kb) for the low (r = 10-9), medium (r = 10-8), and high 133 

recombination rates (r = 10-7). We measured the mean RF distance (between the true and inferred tree 134 

at each site along the alignment) across replicates to quantify differences between the three methods in 135 

terms of phylogenetic accuracy. That is, we sought to understand whether the core function of 136 

Chromo.Crawl (i.e., infer more accurate gene trees using longer, concatenated windows) was indeed 137 

successful at improving phylogenetic accuracy across simulated chromosomes, and in particular, its 138 
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success when compared to the RANDOM, FIXED, and CONCAT approaches that are agnostic to 139 

diverse spans of phylogenetic signal across an alignment. 140 

Our results provide evidence that Chromo.Crawl does indeed provide more accurate inferences than 141 

either the RANDOM, FIXED, or CONCAT approaches (Figure S5). For example, the minimum mean 142 

RF distance of Chromo.Crawl was always smaller than or comparable to the corresponding window 143 

size of both the FIXED and RANDOM in the majority of cases. This is perhaps best illustrated when 144 

comparing the one kb results of Chromo.Crawl (mean RF = 0.09) to the one kb FIXED (mean RF = 145 

0.37) and RANDOM (mean RF = 0.38) analyses, respectively, for the low recombination results 146 

(Figure S5a). Accuracy tends to increase for both the FIXED and RANDOM strategies with larger 147 

window sizes (i.e., approximately 10 to 20 kb), while in contrast, Chromo.Crawl appears to adaptively 148 

adjust to the optimal window size across each recombination rate setting, finding a minimum mean RF 149 

distance with windows of size two kb for the low recombination rate (Figure S5a), one kb for the 150 

medium recombination rate (Figure S5b), and four to 20 kb for the high recombination rate (Figure 151 

S5c). Moreover, even the smallest minimum window size for Chromo.Crawl of one kb performed 152 

comparatively well, indicating that it would be sufficient for a user to just specify a minimum window 153 

size of one kb, with PhyloWGA adaptively changing window sizes across a chromosome and providing 154 

improved phylogenetic accuracy over fixed user-defined window approaches. The pervasive 155 

abundance of recombination events (e.g., see Figure S4 as an illustration) reduced phylogenetic 156 

accuracy across the board in our highest recombination rate simulations (Figure S5c). Yet, we found 157 

evidence that Chromo.Crawl nonetheless outperformed the FIXED, RANDOM, and CONCAT 158 

approaches in these challenging scenarios. These results suggest that the genome-informed approach 159 

of Chromo.Crawl does indeed provide meaningful improvements in phylogenetic accuracy over 160 

alternative approaches that do not attempt account for the tendency of adjacent genomic regions to 161 

share a common genealogical history.  162 
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Collectively, these results (Figures S1-S5) promote the user-friendly framework PhyloWGA as a tool 163 

for improving chromosome-scale phylogenetic accuracy. In general, we expect the accuracy of 164 

PhyloWGA to be dynamic as a function of both experimental and evolutionary parameters (i.e., Figs. 165 

S2-S5). As expected, these results suggest that genomic regions with low recombination rates may be 166 

more accurately reconstructed with PhyloWGA (and most any other approach, including RANDOM 167 

and FIXED strategies; Figure S5), when compared with regions with high recombination rate. In any 168 

case, we encourage users to carefully consider the evolutionary context (e.g., recombination rates) of 169 

their particular datasets when analyzing with PhyloWGA or any other phylogenetic analyses.  170 
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 203 

 204 
Figure S1. Results of simulation analyses for demonstrating the accuracy of PhyloWGA on chromosome alignments simulated with a 205 
recombination rate of r = 10-9 (a), 10-8 (b), and 10-7 (c) per site per generation. Black lines indicate the mean Robinson-Foulds (RF) distance 206 
for each nucleotide site position in the 100 kb simulated alignments (i.e., site means measured across the respective nine replicates shown in 207 
Figures S2-S4). Red dashed line indicates the total mean across the entire alignment. 208 
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 209 
Figure S2. Results of the simulation analyses for demonstrating the accuracy of PhyloWGA on chromosome alignments simulated with a 210 
recombination rate of r = 10-9 per site per generation. Each of nine replicate analyses are shown in each successive panels a-i. Red dashed 211 
lines indicate recombination events yielding differences in topology, while alternating light and dark gray blocks indicate concatenated 212 
windows from Chromo.Crawl with one kb windows and step sizes. Blue circles demarcate the boundaries of concatenated windows. Black 213 
lines measure the Robinson-Foulds (RF) distance between the true, simulated tree and the inferred tree from Chromo.Phylome. 214 
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 215 
Figure S3. Results of the simulation analyses for demonstrating the accuracy of PhyloWGA on chromosome alignments simulated with a 216 
recombination rate of r = 10-8 per site per generation. Each of nine replicate analyses are shown in each successive panels a-i. Red dashed 217 
lines indicate recombination events yielding differences in topology, while alternating light and dark gray blocks indicate concatenated 218 
windows from Chromo.Crawl with one kb windows and step sizes. Blue circles demarcate the boundaries of concatenated windows. Black 219 
lines measure the Robinson-Foulds (RF) distance between the true, simulated tree and the inferred tree from Chromo.Phylome. 220 
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 221 
Figure S4. Results of the simulation analyses for demonstrating the accuracy of PhyloWGA on chromosome alignments simulated with a 222 
recombination rate of r = 10-7 per site per generation. Each of nine replicate analyses are shown in each successive panels a-i. Red dashed 223 
lines indicate recombination events yielding differences in topology, while alternating light and dark gray blocks indicate concatenated 224 
windows from Chromo.Crawl with one kb windows and step sizes. Blue circles demarcate the boundaries of concatenated windows. Black 225 
lines measure the Robinson-Foulds (RF) distance between the true, simulated tree and the inferred tree from Chromo.Phylome. 226 
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 227 
Figure S5. The adaptive window size for estimating gene trees provides Chromo.Crawl with improved chromosome-scale phylogenetic 228 
accuracy compared to typical approaches that do not approximate optimal window sizes. Phylogenetic accuracy of Chromo.Crawl (red 229 
triangles) compared with three alternative strategies: the FIXED approach using a fixed sliding window size to infer gene trees (blue circles), 230 
the RANDOM approach with trees inferred across randomly sampled genomic regions also of fixed size (green squares), and the CONCAT 231 
approach that assumes all windows share the same tree by concatenating the entire 100kb window (brown diamonds). Results shown for 232 
mean Robinson-Foulds (RF) distance (bars indicate standard deviation) across nine replicates for the (a) low (r = 10-9), (b) medium (r = 10-233 
8) , and (c) high (r = 10-7) recombination rate simulations using one, two, four, five, 10, and 20 kb window sizes, respectively (left to right 234 
in each panel).  235 
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