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Abstract

Biofluid proteomics is a sensitive and high throughput technique that provides vast

amounts of molecular data for biomarker discovery. More recently, dried blood spots

(DBS) have gained traction as a stable, noninvasive, and relatively cheap source of pro-

teomic data for biomarker identification in disease and injury. Snake envenomation is

responsible for significantmorbidity andmortality worldwide; however, much remains

unknown about the systemic molecular response to envenomation and acquiring bio-

logical samples for analysis is a major hurdle. In this study, we utilized DBS acquired

froma case of lethal rattlesnake envenomation to determine the feasibility of discover-

ingbiomarkers associatedwithhumanenvenomation.We identifiedproteins thatwere

either unique or upregulated in envenomated blood compared to non-envenomated

blood and evaluated if physiological response pathways and protein markers that cor-

respond to the observed syndromes triggered by envenomation could be detected.

We demonstrate that DBS provide useful proteomic information on the systemic pro-

cesses that resulted fromenvenomation in this caseand findevidence for amassiveand

systemic inflammatory cascade, combined with coagulation dysregulation, comple-

ment system activation, hypoxia response activation, and apoptosis. We also detected

potential markers indicative of lethal anaphylaxis, cardiac arrest, and brain death. Ulti-

mately, DBS proteomics has the potential to provide stable and sensitive molecular

data on envenomation syndromes and response pathways, which is particularly rele-

vant in low-resource areas which may lack the materials for biofluid processing and

storage.

Abbreviations: DBS, Dried blood spot; DOC, Sodium deoxycholate; TCEP, Tris (2-carboxyethyl) phosphine; LC-MS/MS, Liquid chromatography-tandemmass spectrometry; NDBS,

Nonenvenomated dried blood spot; EDBS, Envenomated dried blood spot; NETs, Neutrophil extracellular traps; CSR, Cytokine storm reaction; DIC, Disseminated intravascular coagulation; HSPs,

Heat shock proteins; SVMPs, Snake venommetalloproteases; CRP, C-reactive protein; VWF, VonWillebrand factor; CSF, Cerebrospinal fluid; CAND1, Cullin-associated and

neddylation-dissociated 1 protein; CNS, Central nervous system; KLKB1, Plasma kallikrein; TGF-β, Transforming growth factor β.
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1 INTRODUCTION

Blood is a rich source of valuable information regarding health sta-

tus, pathological syndrome, and disease progression. Blood and plasma

proteomics methods represent sensitive and high throughput tech-

niques that can provide vast amounts ofmolecular datawhich has been

used for the discovery and quantification of a myriad of human disease

biomarkers.1–5 Utilizing dried blood spots (DBS) for proteomic identi-

fication of biomarkers circumvents many of the drawbacks of biofluid

collection and handling while providing a relatively cheap, stable, and

minimally invasive method for collecting blood, even in a non-clinical

setting.6,7

Snake envenomation remains a worldwide scourge that primar-

ily affects tropical and subtropical developing countries and was

re-classified as a category A Neglected Tropical Disease by the

World Health Organization in 2017.8,9 Although antivenoms exist

for many medically significant species, snakebite continues to be a

significant cause of morbidity and mortality in these areas.10,11 One

major hurdle to improving outcomes is the production of effective

antivenoms, the development of which should incorporate aspects

of regionally relevant venom variation and an understanding of its

relationship to the pathophysiology of envenomation.10

Snake venoms are complex toxic mixtures whose summative and

synergistic effects trigger a cascade of physiological disruptions.

Recent proteomic studies have investigated the effects of venoms or

isolated toxins on mouse plasma,12 plasma extracellular vesicles,13

wound exudate,14–17 and cardiac tissue,18 each providing insight into

the specific biological processes activatedduring envenomation. Bridg-

ing the gap between the data gathered in model organisms under

experimental conditions and the information acquired in a clinical

setting has the potential to provide a comprehensive picture of the

mechanisms of pathophysiology triggered by envenomation as well as

a suitable panel of potential biomarkers indicative of envenomation

syndromes and outcomes.

In this study, we utilized DBS acquired from an individual case of

lethal rattlesnake envenomation to determine the feasibility of discov-

ering biomarkers associated with human envenomation. We identified

proteins thatwere either unique or upregulated in envenomated blood

compared to non-envenomated blood and evaluated if biological path-

ways and protein markers could be detected that correspond to the

observed syndromes triggered by envenomation.

2 METHODS AND MATERIALS

2.1 Blood collection

Wholebloodwas collected froma6-year-oldpatient envenomatedbya

Prairie Rattlesnake (Crotalus viridis viridis) who rapidly declined within

minutes of being envenomated and ultimately died several days later

from the sequelae of the envenomation.Written consent for the use of

blood for this analysis was obtained from the patient’s parents andwas

verbally reconfirmed with them just prior to manuscript submission.

The family requested no further details of events ormedical treatment

be discussed. Only information regarding the envenomation syndrome

that could be gleaned from public sources was discussed in this paper.

DBS from this patient were generated using whole blood drawn

from the patient into EDTA-coated tubes during treatment. A small

volume of blood was spotted on a Whatman 903 Proteinsaver Card

(Tisch Scientific). Blood spots were dried at ambient temperature for

24 h before storage in a re-sealable zipper bag containing a humid-

ity sponge with an indicating desiccant. Blood from a single healthy

donor adult male was collected and processed in the same manner.

Blood from this individual was used as a control in order to com-

pare the blood proteomic profile of an envenomated individual to a

non-envenomated individual. Samples were processed for mass spec-

trometry 10 days following collection and spotting ontoWhatman 903

Proteinsaver Cards.

Two DBS discs (3 mm each) were punched using an Electron

Microscopy Sciences (Hatfield, PA) Aluminum Punch Kit. Discs were

added to 500 μl of 50 mM ammonium bicarbonate with 2% sodium

deoxycholate (DOC) as in Eshghi et al.6 Discs were incubated for 45

min at 37◦C at 1400 RPM on an Eppendorf Thermomixer C (Hampton,

NH). To pellet extracted discs and particulates, samples were cen-

trifuged for 15 s and 200 μl of supernatant was transferred to a new

Eppendorf tube.

The volume of supernatant corresponding to 30 μg of protein was

diluted in 8 M urea/0.1 M Tris (pH 8.5) and reduced with 5 mM TCEP

(tris (2-carboxyethyl) phosphine) for 20min at room temperature. Sam-

ples were alkylated with 50 mM 2-chloroacetamide for 15 min in the

dark at room temperature and then diluted four times with 100 mM

Tris-HCl (pH 8.5) and trypsin digested overnight at 37◦C using an

enzyme/substrate ratio of 1:20. To stop the reaction, samples were

acidified with 10 μl of 10% formic acid (FA), and digested peptides

were purified with Pierce C18 Spin Tips (Thermo Scientific) according

to the manufacturer’s protocol. Samples were dried in a SpeedVac and

redissolved in 0.1% FA.

2.2 Liquid chromatography-tandem mass
spectrometry analysis

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was

performed using an Easy nLC 1000 instrument coupled with a Q

Exactive HF Mass Spectrometer (both from ThermoFisher Scientific).

Peptides were loaded on a C18 column (100 μM inner diameter x 20

cm) packed in-housewith 2.7 μmCortecs C18 resin, and separated at a

flow rateof 0.4 μl/minwith solutionA (0.1%FA) and solutionB (0.1%FA

in ACN) under the following conditions: isocratic at 4%B for 3min, fol-

lowedby4%–32%B for102min, 32%–55%B for5min, 55%–95%B for

1min and isocratic at 95%B for 9min. The data-dependent acquisition

was performed, and the top 15 most abundant precursors were con-

sidered for MS/MS analysis. Samples from the patient and the healthy

control were each analyzed by LC-MS/MS in technical triplicate.
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F IGURE 1 Workflow for the processing of dried blood spots from either envenomated or non-envenomated blood for bottom-up proteomics
and bioinformatic analysis for envenomation biomarker identification and associated pathway analysis.

2.3 Peptide and protein identification

Fragmentation spectra were interpreted using the MSFragger-based

FragPipe computational platform19,20 against the UniProt human

proteome (ID: UP000005640) database. Reverse decoys and con-

taminants were included in the search database. Cysteine car-

bamidomethylation was selected as a fixed modification, oxidation of

methionine was selected as a variable modification, and precursor-ion

mass tolerance and fragment-ion mass tolerance were set at 20 ppm

and 0.4Da, respectively. Up to 2missed tryptic cleavageswere allowed

and the protein-level false discovery rate (FDR) was set to <1%. The

relative abundance of proteins was compared across samples using

log-transformed spectral intensity inMetaboanalyst 5.0.21

2.4 Gene ontology and network analysis

Overlap between proteins identified in whole blood and DBS from

the non-envenomated individual (NDBS) or NDBS and envenomated

DBS (EDBS) were determined using the Bioinformatics and Evolu-

tionary Genomics Venn Diagram Tool (Figure 1; http://bioinformatics.

psb.ugent.be/webtools/Venn/). Proteins found to be unique between

preparation methods were input for gene enrichment analysis into

ShinyGO 0.76 with an FDR cutoff of 0.05, pathway size minimum of

2 and maximum of 2000 with redundancies removed using the gene

ontology (GO) Biological Process Pathway and a KEGG database.22

Unique proteins were also input into ELIXIR gProfiler (https://biit.cs.

ut.ee/gprofiler/gost) with Homo sapiens as the reference organism and

statistical domain scope set to only annotated genes with a g:SCS sig-

nificance threshold and user threshold of 0.05. Network analysis of

upregulated proteins in EDBS was performed in Cytoscape 3.9.123,24

using the plugin BiNGO 3.0.325 with a hypergeometric statistical test,

theBenjamini&HochbergFDRcorrectionat a significance level of 0.05

and using ontology terms for biological process. The output network

was annotated to show broad groupings of similar processes.

3 RESULTS

3.1 Fresh blood versus DBS

We identified a total of 683 proteins in healthy human whole blood

and DBS (Figure 2A). Of these proteins, 550 (80.5%) were able to

be detected in DBS. One hundred thirty-three proteins (19%) were

identified in whole blood samples but not in DBS. The majority of

the proteins unique to whole blood were assigned in Panther to the

gene ontology molecular function terms associated with binding (53%;

GO:0005488) and catalytic activity (35.7%; GO:0003824; Figure 2A).

ShinyGO 0.76.2 identified GO terms associated with the biological

process as proteasome protein deneddylation (n = 4, FC = 84.4),

nucleotide-excision repair/DNAdamage recognition (n=4; FC=36.7),

and protein activation cascade (n = 4, FC = 30.2) as the top 3 most

enriched pathways.

3.2 EDBS unique proteins

We identified 480 proteins total from envenomated DBSs. In DBSs

from both an EDBS and an NDBS, 436 proteins were common in both

samples (73%; Figure 2B). Only 44 proteins (7.4%) were unique to
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F IGURE 2 Shotgun proteomics from dried blood spots (DBS). (A) Comparison of proteomic coverage betweenDBS andwhole blood from the
non-envenomated individual blood sample and identification and distribution of gene ontology (GO)molecular function terms in Panther of
proteins unique to whole blood. (B) Comparison of proteomic profile between envenomated DBS (EDBS) and non-envenomated individual (NDBS)
and identification of top 20 pathways associated with proteins unique to EDBS using GO biological process terms in ShinyGO 0.76.2. (C) Heatmap
cluster analysis of EDBS andNDBS run in triplicate showing clusters of overexpressed proteins in EDBS. (D) Volcano plot for identification of over-
and underexpressed proteins in EDBSwith a fold change> 2 and a significance threshold of 0.05. Significantly overexpressed proteins are
indicated in red and significantly underexpressed proteins are indicated in blue. (E) Gene ontology and pathway enrichment analysis in ShinyGO
0.76.2 of the top 14 underexpressed proteins in DBS. (F) Gene ontology and pathway enrichment analysis of the top 20 overexpressed proteins in
DBS. (G) Gene ontology analysis and abundance in Panther of all overexpressed proteins in DBS.

envenomated DBS (Table S1). Gene ontology analysis of unique pro-

teins in EDBS showed significant enrichment for 92 pathways (Table

S2). The top 20 enriched pathways associated with unique proteins

are primarily involved in an acute inflammatory response and immune

system activation (Figure 2B). These include neutrophil activation and

degranulation (n = 12, FC = 10), cell activation (n = 14, FC = 4.2), and

cell exocytosis (n= 16, FC= 7.7).

3.3 Significantly upregulated and downregulated
pathways in EDBS

Hierarchical clustering shows clear segregation of technical replicates

of both NDBS and EDBS despite some variation between replicates

(Figure 2C). There appear to be clear comprehensive differences

between EDBS and NDBS including a cluster of highly upregulated

proteins unique to the envenomated sample. Fold change analysis

revealed the presence of 30 downregulated proteins and 118 upreg-

ulated proteins in EDBS compared to NDBS (Figure 2D and Table

S3).

The 30 downregulated proteins in EDBS were associated with 158

pathways with the top pathways involving very-low-density lipopro-

tein particle clearance (Figure 2E and Table S4; n = 2, FC = 393),

chylomicron remnant clearance (n = 2, FC = 197) remodelling (n = 2,

FC = 174) and assembly (n = 2, FC = 143) and protein-lipid complex

remodelling (n = 3, FC = 59). The identified downregulated marker

involved in the kinin cascade is plasma kallikrein (KLKB1; FC = 0.14,

p = 0.02). The markers involved in lipoprotein particle clearance and

protein-lipid complex remodelling were apolipoprotein C-II (APOC2;

FC = 0.16, p = 0.01) and C-III APOC3 (FC = 0.22, p = 0.09), and

lipoprotein a (LPA; FC= 0.04, p= 0.01).

Gene ontology analysis of upregulated proteins in EDBS showed

significant enrichment for a wide variety of pathways (Tables 1 and 2

and Table S5). We identified 512 pathways with an FDR under 0.05
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TABLE 1 Upregulatedmarkers associated with immune system processes organized by gene ontology (GO) biological process or KEGG
pathway terms identified in ShinyGO 0.76.2

Immune-related pathway GO term Gene IDs

Activation of immune response GO:0002253 C6CD5LCTBHSP90AA1PSMA6ACTR3ARPC1BACTR2 FCN3PSMB4ARPC5MNDA

C1QAACTG1

Inflammatory response GO:0006954 AHSGANXA1CD5L ELANE FN1GSTP1 KRT16 LBP LYZ PPBP PRDX5 PSMA6 PSMB4

S100A12 S100A8 S100A9 SERPINA3 SOD1 THBS1MSB4X

Complement activation GO:0006956 C1QAC6CD5L FCN3

Neutrophil-mediated immunity GO:0002446 B2MBPI CAMPCATCTSGDSG1 EEF1A1 ELANEGCAGSNGSTP1 SP90AA1 LBP LCN2

LTF LYZMNDAPGM1PKMPPBP PRTN3 RAB5C S100A12 100A8 S100A9

SERPINA3 TUBB4BVCLWDR1

NET formation KEGG hsa04613 CTSGCAMPELANEH4C9H2AC20H2BC12 VWF

Platelet activation GO:0030168 FLNAHSPB1 TLN1VCL VWFYWHAZ

Platelet degranulation GO:0002576 ACTN1AHSG F13A1 FLNA FN1 PPBP SERPINA3 SOD1 TF THBS1 TLN1 TMSB4XVCL

VWFWDR1

Cytokine-mediated signalling GO:0019221 ANXA1B2MCAPZA1CTSG F13A1 FN1GSTP1HSPA5HSPB1HSP90AA1 LBP LCN2

LCP1 PPBP PRTN3 PSMA6 PSMB4 SOD1 TALDO1 TMSB4XVIMYWHAZ

Cytokine production GO:0001816 LTFHSP90AA1GSTP1 BPI HSPB1 FN1 LBPANXA1 THBS1 LUMSOD1MNDA

TMSB4X B2MELANE

Cellular response to cytokine stimulus GO:0071345 VIMHSPA5HSP90AA1GSTP1 CTSG PSMA6ACTR3 FN1CAPZA1 F13A1 LBP ANXA1

LCP1 THBS1 ACTR2ATIC SOD1GSN LCN2 PSMB4MNDAPPBPCAMPYWHAZ

TALDO1ACTG1 TMSB4X B2MPRTN3

Interleukin-8 production GO:0032637 ANXA1BPI ELANE LBP TMSB4X

Response to interferon-γ GO:0071346 ACTR3ACTR2ACTG1 B2MGSNVIM

Interleukin-1 β production ANXA1GSTP1HSPB1MNDA

Response to interleukin-1 β GO:0070555 ANXA1CAMP LCN2 PSMA6 PSMB4

Response to interleukin-12 GO:0071349 CAPZA1 LCP1 SOD1 TALDO1

Tumour necrosis factor production BPI GSTP1HSPB1 LBP LTF THBS1

Response to tumour necrosis factor GO:0034612 CAMPGSTP1 LCN2 PSMA6 PSMB4 THBS1MSB4X

IL-17 signalling pathway KEGG hsa04657 HSP90AA1 LCN2 S100A8 S100A9

TABLE 2 Upregulatedmarkers associated with various processes or pathologies organized by GO biological process or KEGG pathway terms
identified in ShinyGO 0.76.2

Pathway GO term Gene IDs

Apoptosis GO:0042981 ACTN1ANXA1C1QACATCTSG ENO1 FCN3 FLNAGSNGSTP1HINT1

HSP90AA1HSPA5HSPB1 LTFMNDAPRDX3 PRDX5 S100A8 S100A9

SOD1 THBS1

YWHAZ

Response to hypoxia/hypoxia-inducible

factor 1 signalling

GO:0001666

KEGG hsa04066 ALDOBCAT ENO1 PSMA6

PSMB4 THBS1 TF

Response to oxidative stress GO:0006979 GSTP1HSPB1CAT PRDX5ANXA1 SOD1 LCN2 PRDX3GPX3

Blood coagulation GO:0007596 F13A1 FLNA FN1HBG2HSPB1 PRTN3 THBS1 TLN1VCL VWFYWHAZ

Blood vessel development GO:0001568 ACTG1ANXA1ANXA3CAMP FLNA FN1HSPB1 PKMTHBS1 YWHAZ

Brain development GO:0007420 ACTBANXA3ARPC5ATIC B2MBASP1 FLNA

HSPA5UGP2

Maintenance of the blood-brain barrier GO:0035633 VCL ACTBACTG1

Pathways of neurodegeneration KEGG hsa05022 HSPA5 PSMA6CAT SOD1 PSMB4 TUBB4BGPX3

Hypertrophic cardiomyopathy KEGG hsa05410 ACTBACTC1 TPM4ACTG1
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associated with the 118 identified upregulated proteins in EDBS. The

top 20 enriched pathways for upregulated proteins (Figure 2F) were

significantly enriched for markers associated with an acute inflam-

matory response and immune system activation, including neutrophil

activation and degranulation (n= 31 genes, FC= 10), cell activation (n

= 45, FC= 5), and cell exocytosis (n= 43, FC= 8).

EDBS were also significantly enriched for proteins associated with

the broad categories of an inflammatory response (n = 20, FC = 4.24;

Table 1 and Table S5), activation of immune response (n = 14, FC

= 4.77), and complement activation (n = 4, FC = 8.5). Immune sys-

tem pathways included platelet activation (n = 9, FC = 10.2; Table 1

and Table S5) and degranulation (n = 15, FC = 22), cytokine produc-

tion (n = 15, FC = 3), signaling (n = 20, FC = 4.17), and response (n

= 29, FC = 4.6). More specifically GO analysis in ShinyGo identified

cytokine-associated production and/or response pathways that were

significantly enriched for interleukin-1 beta, interleukin-8, interleukin-

12, tumour necrosis factor and interferon-gamma (Table 1 and Table

S4). ShinyGO KEGG pathway analysis (Table S6) and network analy-

sis in Cytoscape (Table S7) identified interleukin-17 and interleukin-6

production, respectively. There was also significant enrichment in

apoptosis pathways (Table 2; n = 20, FC = 2.5), blood coagulation (n =

14, FC= 7), cellular detoxification (n= 9, FC= 15), wound healing (n=

18, FC = 6), blood vessel development (n = 10, FC = 2.8), hemopoiesis

(n=13, FC=2.5) and response tohypoxia (n=5, FC=2.7). Last, numer-

ous nervous system and brain-associated markers were significantly

enriched, including astrocyte development (n = 4, FC = 14.6), blood-

brain barrier (n=3, FC=16.8), brain-specific development (n= 9, FC=

2.2) and neuron development (n= 12, FC= 2).

The markers with the highest positive fold change in EDBS are

primarily associated with wound healing and blood coagulation, brain-

specific processes, apoptosis, and inflammatory processes including

cytokineproduction andneutrophil activity (Table S3 andS5). Themost

upregulated markers of coagulation and brain-specific processes were

von Willebrand factor (VWF; FC = 625.16, p < 0.0001; Table S3) and

brain abundant membrane attached signal protein 1 (BASP1; FC =

95.8, p = 0.08), respectively. Numerous inflammatory markers asso-

ciated with cytokine production and neutrophil activity had high fold

enrichment. Markers of cytokine production included actin-related

protein 2 (ACTR2; FC = 39, p = 0.0012), bactericidal permeability-

increasing protein (BPI; FC = 75, p < 0.0001), lipopolysaccharide-

binding protein (LBP; FC= 50, p= 0.0026). Highly enrichedmarkers of

neutrophil activity included Ras-related protein (RAB5C; FC = 59, p =

0.078), S100A8 Protein (S100-A8; FC = 46; p = 0.0004), S100A9 Pro-

tein (S100A9; FC= 43, p= 0.0001), S100A12 Protein (S100A12; FC=

86, p < 0.001), and lysozyme C (LYZ; FC = 42; p < 0.0001). Markers of

apoptosis included endoplasmic reticulum chaperone BiP (HSPA5; FC

= 39; p< 0.0001).

Analysis of upregulated proteins in Panther by protein class

revealed that the majority of markers were associated with the

cytoskeleton (Figure 2G; GO: PC00085; n = 21, 20%), defence and

immunity (GO:PC00090;n=23, 22%), andmetabolite conversion (GO:

PC00262; n = 22, 21%). The majority of upregulated cytoskeletal ele-

ments were comprised of actin and actin-binding cytoskeletal proteins

(81%) including two myosin proteins (MYL12B and MYL6) and one

actin specific to the cardiac muscle (ACTC1).

4 DISCUSSION

In this study, we analyzed the proteomic profile of DBS in order

to ascertain if biomarkers associated with the pathological events

following a case of lethal human envenomation could be detected.

Envenomation can result in the dysregulation of many systems in the

body simultaneously, and human envenomations are a complex and

evolving medical emergency. By compiling a panel of both upregulated

and unique proteins compared to non-envenomated blood, we identi-

fied a variety of affected pathways and flagged potential biomarkers

indicative of severe envenomation in this case. We find multiple lines

of evidence of a systemic and severe inflammatory response medi-

ated bymast cell, neutrophil, and platelet activation and degranulation

as well as a cytokine storm reaction (Figure 3). Further, we identified

protein markers suggestive of lethal anaphylaxis, cardiac arrest, and

neuroinflammation.

Gene ontology and network analysis illustrated a dramatic systemic

effect triggered by envenomation with a dominant signal of immune

system activation (Figures 2B,F and 3; Table 1). We also identified

enrichment for pathways of apoptosis, blood coagulation, and those

associated with a response to hypoxia along with markers that may be

associatedwith brain damage and cardiac failure (Table 2).Our findings

shed light on the specific mechanisms responsible for the syndromes

observed following a lethal envenomation and demonstrate the utility

of DBS to provide critical proteomic data on the pathophysiology of

snakebites. This study is, to our knowledge, the first proteomic char-

acterization of pathophysiology from envenomated human blood and

the first investigation of envenomation biomarkers using DBS.

In this specific case, envenomation by C. v. viridis triggered an

apparent and lethal rapid anaphylactic reaction characterized by sud-

den collapse, cardiac arrest, and eventual brain death. It is unlikely

that the initial inflammatory response was triggered by the specific

action of venom toxins. Rarely, acute and severe anaphylactic reac-

tions have occurred following venomous snake bites, including bites

from rattlesnakes.26,27 Clinical manifestations of venom-induced ana-

phylaxis include respiratory distress, hypotension, arrhythmia, shock,

airway closure, and allergic myocardial infarction.26,28–30 Hypersen-

sitivity in these cases occurred primarily in individuals with previous

snake bites or long-term exposure to venoms and is thought to be IgE-

mediated and therefore requiring previous sensitization.31,32 How-

ever, cross-reactivity with unrelated antigens could result in severe

venom hypersensitivity in patients without prior exposure.30,33,34

Regardless of the mechanism of induction, immune system pro-

cesses dominated the top 20 enriched pathways for both unique and

upregulated proteins and we further identified multiple signatures

associated with inflammatory signalling and response (Table 1 and

Figure 2). Similar to previous studies on biofluids investigating the

effects of envenomation, we identified differences in proteins associ-

ated with a thromboinflammatory reaction including activation of the
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F IGURE 3 Gene ontology (GO) term network analysis fromCytoscape. Node size indicates the number of markers associated with a given
term and node colour indicates the p-value. Nodes were annotated to showmajor biological systems and pathways affected.

complement system, coagulation, oxidative stress, neutrophil degran-

ulation, and platelet degranulation.12,13,35 Inflammation is a common

response to envenomation. However, we did not detect the same pro-

teins that were suggested to indicate the severity of inflammation,

perhaps due to the development of anaphylaxis in this case as opposed

to a less severe localized inflammatory reaction.12 These authors

attributed some of these inflammatory processes to the actions of

venom toxins; however, it is also likely that early-stage immune pro-

cesses (i.e. platelet degranulation, neutrophil chemotaxis) triggered

by envenomation are the result of a general defence response. The

unravelling of the direct mechanisms of venom toxin action ver-

sus a general defence response to foreign antigens requires further

study.

Gene ontology analysis revealed enrichment for cellular pathways

involved in early immune response events including mast cell and neu-

trophil activation and degranulation, as well as pathways triggering

degranulation and aggregation of platelets, which have been shown

to play an integral role in inflammation via crosstalk with leukocytes

and the vascular endothelium.36 Both mast cells and neutrophils are

recruited during anaphylactic reactions depending on the type of

stimulus and pathway, and neutrophil activation has been correlated

with the severity of anaphylaxis in IgE-dependent reactions.37 We

also find evidence for the occurrence of NETosis, a pro-inflammatory

neutrophil-mediated reaction that can occur soon after the onset of

anaphylaxis.37,38 Neutrophil extracellular traps (NETs) are cytotoxic

to vascular endothelium and likely synergistically contribute to the

vascular extravasation that occurs during anaphylaxis.39–41

EDBS-enriched proteins were closely associated with pathways

involved in the production, signalling, and response to numerous

inflammatory molecules linked with severe immune reactions, includ-

ing histamine, cytokines (IL-1 β, IL-6, IL-8, IL-12, IL-17, IFN-γ and TNF;
Table 1), growth factors (TGF-β), and C-reactive protein (CRP). His-

tamine released from mast cell degranulation is a key mediator of

anaphylactic reactions and, depending on its downstream targets, is

involved in thegenerationof nitric oxide and increasedvascular perme-

ability, cytokine synthesis, blood-brainbarrier function, bronchospasm,

and cardiac contraction.42–44 Further, allergic reaction severity and

delayed deterioration have been linked to elevated levels of histamine,

IL-6, and TNF-1 receptor.45 Mast cell expression of IL-8 acts as a

magnifier of the inflammatory cascade via paracrine effects on other

leukocytes involved in inflammation,46 and CRP and IL-6 may act as

late-phasemediators of hypersensitivity reactions.47

The enrichment for proteins involved in the production and sig-

nalling of numerous cytokines suggests the occurrence of a cytokine

storm reaction (CSR), caused by the release of large quantities of

cytokines including IL-8, IFNγ, TNFα, IL-1β and IL-6. In severe cases,

this rapid release of inflammatory signals triggers increased endothe-

lial permeability and vascular leakage, activation of the coagulation

system causing a systemic syndrome with organ failure, disseminated

intravascular coagulation, hypotension, hypoxemia, and cardiovascular
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collapse.48 Specifically, IL-6 has been proposed as a biomarker of CSR

because of its correlation with reaction severity.48,49

Another mediator of inflammation, heat shock proteins (HSPs),

are a family of stress-induced molecules with cytoprotective actions

that act as danger-signalling biomarkers.50 EDBS showed upregula-

tion of HSP90 and HSP27 (HSPB1) and uniquely expressed HSP70

(HSPA5). Increased levels of HSP27 in plasma have been found after

acute ischemic stroke 51 and are released by myocardial cells after

ischemia.52 HSP70 has been shown to stimulate both arms of the

immune system and trigger the release of cytokines50 (IL-1β, IL-6, IL-
12 and IFNγ). There is also evidence that these HSPs play a protective
role during neuroinflammation by suppressing astrocyte inflammatory

signals or interacting with ASK1 and inhibiting the ASK1-MKK4-JNK

pathway.51,53–55 Notably, serum levels of HSP70 have been directly

linked to mortality in patients with CSR and septic shock.56 This sug-

gests that thepresenceofHSP70wasa strong indicator of theoutcome

in this case.

VWF was an upregulated protein with the highest fold increase.

VWF is a mediator of coagulation and clot formation and exerts

significant influence on inflammation via neutrophil recruitment,

regulation of endothelial wall permeability, and altering leukocyte

extravasation.57 Another mediator of coagulation and inflammation,

plasma kallikrein, KLKB1, was significantly downregulated. KLKB1

deficiency has been linked to delayed clotting,58 while high levels of

VWF have been linked to thrombotic disorders,59 suggesting overall

systemic hemostatic dysregulation in this case.

VonWillebrand factor is also a regulator of the response toendothe-

lial cell damage, platelet activation, and platelet plug formation at the

site of injury.60–63 C. v. viridis venom in southern Colorado contains

high levels of snake venom metalloproteases (SVMPs; Smith et al., in

review), which are known to attackmicrovessel structure by proteolyt-

ically degrading the basement membrane and disrupting endothelial

cell adhesion leading to vessel damage and fluid extravasation.64–66

This ultimately can result in local and systemic bleeding, tissue destruc-

tion, and ischemia.67,68 SVMPs also have been shown to play a role in

blood coagulation activation,69,70 apoptosis,71–73 inhibition of platelet

aggregation,74,75 and inflammation.68,74 It is possible that the high lev-

els of VWF are indicative of a response to vascular damage caused by

the abundance of SVMPs in C. v. viridis venom and/or that SVMPs had

a synergistic effect on inflammation, blood coagulation, and apoptosis

with the anaphylactic reaction observed.

There were multiple brain-derived proteins identified in EDBS

that have previously been investigated in CSF as biomarkers of neu-

ropathies associatedwithAlzheimer’sDisease (BASP1,YWHAZ, SOD1

and PKM), and YWHAZ specifically was identified as a strong can-

didate for the identification of neurodegeneration.76 The high abun-

dance of brain-associated proteins in blood as opposed to CSF in

addition to the presence of neuroprotective HSPs, may have resulted

from the significant inflammation and damage to the blood-brain

barrier and CNS that occurred in this case.

The downregulated protein with the highest degree of connec-

tivity in NetworkAnalyst, CAND1 (Figure S1; Cullin-associated and

neddylation-dissociated 1 protein), plays a central role in cardiac

functioning by preventing the accumulation of hypertrophic proteins,

thereby protecting against stress-induced cardiac hypertrophy and

heart failure.77 The direct role of this protein in cardiac functionmerits

its investigation as a biomarker of anaphylaxis-induced heart failure.

While there is significant evidence for the pathways and markers

elucidated here, there remain inherent limitations to the current study.

First, this study only includes data from a single case of envenomation

and a single non-envenomated control; therefore, individual or age-

related variation could be responsible for some of the differences in

protein presence or abundance observed when comparing blood pro-

files. While this is likely the case for a number of identified proteins,

we detected numerous signatures in EDBS unlikely to result from indi-

vidual differences in baseline healthy physiological processes (i.e. the

abundance of HSP). Further, the sheer number of activated pathways

and upregulated markers associated with inflammation and immune

system activation is indicative of an overall trend, despite the potential

for false positives. It is also unclear if the other significantly enriched

pathways, including apoptosis, response to hypoxia, blood coagulation,

and blood vessel development, are downstream effects of anaphylaxis

or if they are the result of the action of venom toxins.31 It is likely that

the broad systemic effects of anaphylaxis masked the direct action of

venom toxins, and ultimately, this limits our ability to correlate specific

venom toxin action with clinical presentation in this instance.

Biofluid proteomics is a robust tool for the investigation of the

pathological events of envenomation and has promise for the devel-

opment of biomarkers associated with envenomation syndrome. Here

we demonstrate that DBS provide useful proteomic information on

the systemic processes that are triggered by envenomation. We find

evidence for a massive and systemic inflammatory cascade, com-

bined with coagulation dysregulation, complement system activation,

hypoxia response activation, and apoptosis. We also identified poten-

tial markers indicative of lethal anaphylaxis, cardiac arrest, and brain

death. The utilization of proteomic data fromDBS has significant impli-

cations for the investigation of envenomation syndromes in limited-

resource and rural settings, which bear the highest costs of snakebite

envenomingworldwide. An enduring challengewill be to bring the ben-

efits indicated by MS-based analysis of DBS to those areas that could

benefit most from this technology.
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